Skip to main content
Log in

Comparison between ANCF and B-spline surfaces

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper compares the descriptions of surfaces used in computational geometry (CG) methods and the finite element (FE) kinematics. Such a description is necessary for the successful Integration of Computer Aided Design and Analysis (I-CAD-A). B-spline surface geometry is defined using rigid recurrence formulas that employ the concept of the knot multiplicity to define the degree of continuity at the breakpoints. The knot multiplicity concept as well as the rigid recurrence formulas do not offer the flexibility provided by FE formulations. Furthermore, the concept of degrees of freedom is not considered in developing CG methods. Consequently, problems can be encountered in using the recurrence formulas to model certain types of joints. It is, therefore, important to adopt a FE method that is consistent with CG methods in order to be able to establish an efficient interface between CAD systems and analysis tools. The FE formulation used in this investigation for the surface description is the Absolute Nodal Coordinate Formulation (ANCF). It is shown in this paper that B-spline surfaces can be converted to ANCF thin plate finite elements without any geometric distortion. To this end, a linear transformation that defines the relationship between the B-spline surface control points and the ANCF position and gradient vectors is developed. The resulting ANCF thin plate finite elements define a unique displacement and rotation field, and their geometry is invariant under an arbitrary rigid body rotations. The analysis presented in this paper clearly shows that all B-spline surfaces can be converted to ANCF meshes that have the same original CAD geometry. The converse is not true; that is, not all ANCF thin plate finite elements can be converted to B-spline surfaces. This sheds light on the flexibility and computational advantage that can be gained by the use of the FE method in the analysis as compared to the use of CG methods. The paper also shows how a B-spline surface can be converted systematically to a volume representation (full parameterization) using ANCF geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbas, L.K., Rui, X., Hammoudi, Z.S.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(K), 127–141 (2010)

    Google Scholar 

  2. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of the Finite Element Analysis, 3rd edn. Wiley, New York (1989)

    Google Scholar 

  3. Cottrell, J.A., Hughes, T., Bazilevs, Y.: Isogeometric Analysis—Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  4. Crisfield, M.A.: A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput. Methods Appl. Mech. Eng. 81, 131–150 (1990)

    Article  MATH  Google Scholar 

  5. Dmitrochenko, O., Mikkola, A.: A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(4), 323–339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  7. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  8. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005)

    Article  Google Scholar 

  9. Garcia-Vallejo, D., Escalona, J.L., Mayo, J., Dominguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34, 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcia-Vallejo, D., Mayo, J., Escalona, J.L.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)

    Article  Google Scholar 

  12. Hamed, A.M., Shabana, A.A., Jayakumar, P., Letherwood, M.D.: Non-structural geometric discontinuities in finite element/multibody system analysis. Nonlinear Dyn. 66, 809–824 (2011)

    Article  Google Scholar 

  13. Hölling, K.: Finite Element Methods with B-Splines. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  14. Huebner, K.H.: The Finite Element Method for Engineers. Wiley, New York (1975)

    Google Scholar 

  15. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43, 239–256 (2006)

    Article  MATH  Google Scholar 

  17. Lan, P., Shabana, A.A.: Integration of b-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, C., Tian, Q., Hu, H.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)

    Article  MATH  Google Scholar 

  19. Mackenzie, D.: Curing I11 surfaces. SIAM Soc. Newsl. 44(3), 1 (2011)

    MathSciNet  Google Scholar 

  20. Mikkola, A., Shabana, A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Murlikrishna, R., Prathap, G.: Studies on variational correctness of finite element elastodynamics of some plate elements. Research Report CM 0306, C-MMACS (2003)

  22. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformation beam for large rotation and deformation. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  23. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  24. Sanborn, G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(2), 181–197 (2009)

    Article  MATH  Google Scholar 

  25. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5(1), 011010 (2010)

    Article  Google Scholar 

  26. Shabana, A.A.: Uniqueness of the geometric representation in large rotation finite element formulations. J. Comput. Nonlinear Dyn. 5, 044501 (2010)

    Article  Google Scholar 

  27. Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  28. Shabana, A.A., Mikkola, A.: On the use of the degenerated plate and the absolute nodal coordinate formulations in multibody system applications. J. Sound Vib. 259(2), 481–489 (2003)

    Article  Google Scholar 

  29. Shabana, A.A., Hamed, A.M., Mohamed, A.A., Jayakumar, P., Letherwood, M.D.: Use of b-spline in the finite element analysis: comparison with ANCF geometry. J. Comput. Nonlinear Dyn. 7(1), 011008 (2012)

    Article  Google Scholar 

  30. Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motion—the plane case: Part I. J. Appl. Mech. 53, 849–854 (1986)

    Article  MATH  Google Scholar 

  32. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.Z.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)

    Article  Google Scholar 

  33. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  34. Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Pogorelov, D., Dimitrochenko, O.: Large deflection analysis of a thin plate: computer simulation and experiment. Multibody Syst. Dyn. 11, 185–208 (2004)

    Article  MATH  Google Scholar 

  35. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Volume 2: Solid Mechanics. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the US Army Tank-Automotive Research, Development, and Engineering Center (TARDEC) (Contract No. W911NF-07-D-0001), and partially by the Ministry of Economy and Competitiveness and the Ministry of Education, Culture, and Sports of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki Mikkola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C. et al. Comparison between ANCF and B-spline surfaces. Multibody Syst Dyn 30, 119–138 (2013). https://doi.org/10.1007/s11044-013-9353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9353-z

Keywords

Navigation