Skip to main content
Log in

Solution to indeterminate multipoint impact with frictional contact using constraints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work presents a method for determining the post-impact behavior of a rigid body undergoing multiple, simultaneous impact with friction. A discrete algebraic model is used with an event-driven function which finds impact events. In this work, the indeterminate nature of the equations of motion encountered at impact is examined. Velocity constraints are developed based on the rigid body assumption to address the equations and an impact law is used to determine the impulsive forces. The slip-state of each impact point is then determined and appropriate methods are used to resolve the post-impact velocities. These techniques are applied to a 3-D model of a ball which is forced to impact a corner between the ground and two wall planes. Additionally, a rocking block example is considered. Simulations are presented for 2-D and 3-D cases of the ball example, and a 2-D model of the rocking block problem to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, Y., Kumar, V., Abel, J.: Dynamics of rigid bodies undergoing multiple frictional contacts. In: Proceedings-IEEE International Conference on Robotics and Automation, May 1992, vol. 3, pp. 2764–2769 (1992)

    Chapter  Google Scholar 

  2. Johansson, L.: A linear complementarity algorithm for rigid body impact with friction. Eur. J. Mech. A, Solids 18, 703–717 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Son, W.: Hybrid dynamic simulation of rigid-body contact with Coulomb friction. In: IEEE International Conference on Robotics and Automation, May 2001, vol. 2, pp. 1376–1381 (2001)

    Google Scholar 

  7. Brach, R.M.: Formulation of rigid body impact problems using generalized coefficients. Int. J. Eng. Sci. 36, 61–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lankarani, H.M., Pereira, M.F.: Treatment of impact with friction in planar multibody mechanical systems. Multibody Syst. Dyn. 6, 203–227 (2001)

    Article  MATH  Google Scholar 

  9. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464, 3193–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465, 2267–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Johansson, L.: A Newton method for rigid body frictional impact with multiple simultaneous impact points. Comput. Methods Appl. Mech. Eng. 191, 239–254 (2001)

    Article  MATH  Google Scholar 

  12. Maeda, Y., Oda, K., Makita, S.: Analysis of indeterminate contact forces in robotic grasping and contact tasks. In: IEEE International Conference on Intelligent Robots and Systems, Oct. 2007, pp. 1570–1575 (2007)

    Google Scholar 

  13. Omata, T., Nagata, K.: Rigid body analysis of the indeterminate grasp force in power grasps. IEEE Trans. Robot. Autom. 16, 46–54 (2000)

    Article  Google Scholar 

  14. Bedford, A., Fowler, W.: Engineering Mechanics: Dynamics. Pearson Education, Upper Saddle River (2008)

    Google Scholar 

  15. Djerassi, S.: Collision with friction; Part B: Poisson’s and Stronge’s hypotheses. Multibody Syst. Dyn. 21, 55–70 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brogliato, B., Ten Dam, A., Paoli, L., Génot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55, 107–149 (2002)

    Article  Google Scholar 

  19. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  20. Johansson, L., Klarbring, A.: Study of frictional impact using a nonsmooth equations solver. J. Appl. Mech. 67, 267–273 (2000)

    Article  MATH  Google Scholar 

  21. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13, 447–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, I., Gilmore, B.J.: Multi-body impact motion with friction-analysis, simulation, and experimental validation. J. Mech. Des. 115, 412–422 (1993)

    Article  Google Scholar 

  23. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  24. Volker, B., Schwager, T., Poshcel, T.: Coefficient of tangential restitution for the linear dashpot model. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 77, 011304 (2008)

    Article  Google Scholar 

  25. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A, Solids 13(4), 93–114 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Moreau, J.J.: Numerical treatment of contact and friction: the contact dynamics method. Eng. Syst. Des. Anal. 76, 201–208 (1996)

    Google Scholar 

  27. Liu, T.: Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst. Dyn. 22, 269–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Springer, London (1999)

    MATH  Google Scholar 

  29. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465, 3323–3339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prieto, F., Lourenço, P.B.: On the rocking behavior of rigid objects. Meccanica 40, 121–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gillespie, R., Patoglu, V., Hussein, I.I., Westervelt, E.R.: On-line symbolic constraint embedding for simulation of hybrid dynamical systems. Multibody Syst. Dyn. 14, 387–417 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bowling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, A., Bowling, A. Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst Dyn 28, 313–330 (2012). https://doi.org/10.1007/s11044-012-9307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9307-x

Keywords

Navigation