Skip to main content

Advertisement

Log in

Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a methodology for treating energy consistency when considering simultaneous impacts and contacts with friction in the simulation of systems of interconnected bodies. Hard impact and contact is considered where deformation of the impacting surfaces is negligible. The proposed approach uses a discrete algebraic model of impact in conjunction with moment and tangential coefficients of restitution (CORs) to develop a general impact law for determining post-impact velocities. This process depends on impulse–momentum theory, the complementarity conditions, a principle of maximum dissipation, and the determination of contact forces and post-impact accelerations. The proposed methodology also uses an energy-modifying COR to directly control the system’s energy profile over time. The key result is that different energy profiles yield different results and thus energy consistency should be considered carefully in the development of dynamic simulations. The approach is illustrated on a double pendulum, considered to be a benchmark case, and a bicycle structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. Trans. ASME 112, 369–376 (1990)

    Article  Google Scholar 

  3. Gonthier, Y., Mcphee, J., Lange, C., PiedbŒuf, J.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

  4. Flores, P., Ambròsio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)

    Article  MATH  Google Scholar 

  5. Stronge, W.J.: Friction in collisions: Resolution of a paradox. J. Appl. Phys. 69, 610–612 (1991)

    Article  Google Scholar 

  6. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000), pp. 173–200

    MATH  Google Scholar 

  7. Brogliato, B., ten Dam, A., Paoli, L., Génot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107–149 (2002)

    Article  Google Scholar 

  8. Gillespie, R.B., Patoglu, V., Hussein, I.I., Westervelt, E.R.: On-line symbolic constraint embedding for simulation of hybrid dynamical systems. Multibody Syst. Dyn. 14(3–4), 387–417 (2005)

    Article  MATH  Google Scholar 

  9. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts, 3rd edn. Wiley Series in Nonlinear Science. Wiley, New York (1996)

    MATH  Google Scholar 

  10. Brach, R.: Friction, restitution, and energy loss in planar collisions. J. Appl. Mech. Trans. ASME 51(1), 164–170 (1984)

    MATH  Google Scholar 

  11. Brach, R.: Mechanical Impact Dynamics: Rigid Body Collisions. Wiley, New York (1991)

    Google Scholar 

  12. Brach, R.: Formulation of rigid body impact problems using generalized coordinates. Int. J. Eng. Sci. 36(1), 61–71 (1998)

    Article  MathSciNet  Google Scholar 

  13. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Berlin (1999), p. 128

    MATH  Google Scholar 

  14. Becker, V., Schwager, T.: Coefficient of tangential restitution for the linear dashpot model. Phys. Rev. E 77(1), 011304-1–011304-12 (2008)

    Google Scholar 

  15. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Berlin (1999)

    MATH  Google Scholar 

  17. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177(3–4), 329–349 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13, 82–92 (1994)

    Article  Google Scholar 

  19. Marghitu, D.B., Hurmuzlu, Y.: Three-dimensional rigid body collisions with multiple contact points. ASME J. Appl. Mech. 62, 725–732 (1994)

    Article  Google Scholar 

  20. Glocker, C.: An introduction to impacts. In: Nonsmooth Mechanics of Solids. CISM Courses and Lectures, vol. 485, pp. 45–102. Springer, New York (2006)

    Chapter  Google Scholar 

  21. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Berlin (1999), p. 198

    MATH  Google Scholar 

  22. Flores, P., Ambròsio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multi-body systems. J. Multibody Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  23. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 2nd edn. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  24. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control Trans. ASME 107(1), 100–103 (1985)

    Article  Google Scholar 

  25. Jr., D.A.H., Friedland, B.: On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control Trans. ASME 113(3), 354–362 (1991)

    Article  Google Scholar 

  26. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Han, I., Gilmore, B.J.: Multi-body impact motion with friction-analysis, simulation, and experimental validation. J. Mech. Des. Trans. ASME 115(3), 412–422 (1993)

    Article  Google Scholar 

  28. Mouri, T., Yamada, T., Iwai, A., Mimura, N., Funahashi, Y.: Identification of contact conditions from contaminated data of contact force and moment. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 597–603 (2001)

  29. Bowling, A.: Dynamic performance, mobility, and agility of multi-legged robots. ASME J. Dyn. Syst. Meas. Control Trans. ASME 128(4), 765–777 (2006)

    Article  Google Scholar 

  30. Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31(3), 255–265 (2005)

    Article  Google Scholar 

  31. Baruh, H.: Analytical Dynamics, 1st edn. WCB MacGraw-Hill, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bowling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowling, A., Flickinger, D. & Harmeyer, S. Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst Dyn 22, 27–45 (2009). https://doi.org/10.1007/s11044-009-9147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9147-5

Keywords

Navigation