Skip to main content
Log in

Isolation and characterization of microsatellites for the neotropical dioecious palm Chamaedorea tepejilote (Arecaceae) and cross-amplification in other Chamaedorea species

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Palms are important components of tropical and subtropical ecosystems and have even been considered keystone plant resources that can support a large array of pollinators and frugivores. Palms are also economically important. Chamaedorea tepejilote Liebm. is a widely distributed palm with important bioeconomic potential for food, traditional medicine and ornamental purposes. Eighteen microsatellite primers were developed for C. tepejilote. Polymorphism and genetic diversity were evaluated in 71 individuals from four populations in Costa Rica. Thirteen loci were polymorphic and the number of alleles in the pooled sample ranged between 5 and 20, the average number of alleles was 10.61. Average observed heterozygosity was Ho = 0.607 ± 0.04 (SD) and the average expected heterozygosity was He = 0.600 ± 0.03. The exclusion probability of the combined 13 loci, was PE = 0.998. We tested transferability of the markers in the congeneric C. costaricana, C. pinnantifrons and C. macrospadix. Dioecious species are common in tropical forests; however, few studies have analyzed gene flow patterns in these species. The markers developed for C. tepejilote are an important tool to quantify gene flow patterns and the distribution of genetic diversity within populations. This information will be useful for the development of conservation and management practices of this dioecious tropical palm species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Availability of data and material (data transparency)

Sequences have been submitted to GeneBank. The datasets generated are available from the corresponding author upon request.

References

  1. ter Steege H, Pitman NCA, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092–1243092. https://doi.org/10.1126/science.1243092

    Article  CAS  PubMed  Google Scholar 

  2. Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800+ rbcL sequences. Bot J Linn Soc 146:385–398. https://doi.org/10.1111/j.1095-8339.2004.00345.x

    Article  Google Scholar 

  3. Terborgh J (1986) Keystone plant resources in the tropical forest. In: Soule ME, Wilcox BA (eds) Conservation biology: an evolutionary–ecological perspective. Sinauer Associates, Sunderland, pp 330–344

    Google Scholar 

  4. Tomlinson PB (1979) Systematics and ecology of the Palmae. Annu Rev Ecol Syst 10:85–107. https://doi.org/10.1146/annurev.es.10.110179.000505

    Article  Google Scholar 

  5. Hodel DR (1992) Chamaedorea palms, the species and their cultivation. Allen Press Inc., Lawrence

    Google Scholar 

  6. Govaerts R, Dransfield J, Zona S, et al (2019) World checklist of Arecaceae. Facilitated by the Royal Botanic Gardens, Kew. https://wcsp.science.kew.org/. Accessed 30 Nov 2019

  7. Mont JJC, Gallardo NR, Johnson DV (1994) The Pacaya Palm (Chamaedorea tepejilote; Arecaceae). Econ Bot 48:68–75. https://doi.org/10.1007/BF02901383

    Article  Google Scholar 

  8. Argueta A (1994) Atlas de las plantas de la Medicina Tradicional Mexicana. Instituto Nacional Indigenista, Mexico

    Google Scholar 

  9. Pérez GC, Zavala SMA, Ventura RE et al (2008) Evaluation of anti-tussive activity of Chamaedorea tepejilote. J Ethnopharmacol 120:138–140. https://doi.org/10.1016/j.jep.2008.07.046

    Article  Google Scholar 

  10. Robles DJR, Carranza ERS (2013) Hypoglycemic activity of Chamaedorea tepejilote Liebm. (pacaya). Rev Cubana Plant Med 18:27–33

    Google Scholar 

  11. Grayum MH (2003) Arecaceae. Manual de Plantas de Costa Rica: Volumen II, Gimnospermas y Monocotiledóneas (Agavaceae-Musaceae). Monogr Syst Bot Missouri Bot Gard 92:201–293

    Google Scholar 

  12. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  13. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  17. Jamieson A, Taylor SCS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400. https://doi.org/10.1111/j.1365-2052.1997.00186.x

    Article  CAS  PubMed  Google Scholar 

  18. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  19. Zalapa JE, Cuevas H, Zhu H et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. https://doi.org/10.3732/ajb.1100394

    Article  CAS  PubMed  Google Scholar 

  20. Taheri S, Lee Abdullah T, Yusop MR et al (2018) Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23:399. https://doi.org/10.3390/molecules23020399

    Article  CAS  PubMed Central  Google Scholar 

  21. Zhou H-P, Chen J (2010) Spatial genetic structure in an understorey dioecious fig species: the roles of seed rain, seed and pollen-mediated gene flow, and local selection. J Ecol 98:1168–1177. https://doi.org/10.1111/j.1365-2745.2010.01683.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Sánchez-Barboza, M. Rodriguez-Bardía, F Mora-Escobar, G. Sanchez-Montoya, E. J. Cristobal-Perez, for help in the Laboratory. We thank Escuela de Biología for providing logistic support for this study. This work was supported by grants from Universidad Nacional Autónoma de México (PAPIIT # IA207618, IV200418, IA105920), SAGARPA-CONACYT 291333, CONACYT-UNAM-UAGro to LANASE (2015-LN250996, 2016-LN271449, 2017-LN280505, 2018-LN293701, 2019-LN299033), Programa Iberoamericana de Ciencia y Tecnologia para el Desarrollo RED CYTED-SEPODI (417RT0527). And grants from Universidad de Costa Rica (111-B7-046, 111-B9-205).

Funding

This work was supported by grants from Universidad Nacional Autónoma de México (PAPIIT # IA207618, IV200418, IA105920), SAGARPA-CONACYT 291333, CONACYT-UNAM-UAGro to LANASE (2015-LN250996, 2016-LN271449, 2017-LN280505, 2018-LN293701, 2019-LN299033), Programa Iberoamericana de Ciencia y Tecnologia para el Desarrollo RED CYTED-SEPODI (417RT0527). And grants from Universidad de Costa Rica (111-B7-046, 111-B9-205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Quesada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This research does not involve humans and therefore informed consents are not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, E.J., Cascante-Marin, A., Madrigal-Brenes, R. et al. Isolation and characterization of microsatellites for the neotropical dioecious palm Chamaedorea tepejilote (Arecaceae) and cross-amplification in other Chamaedorea species. Mol Biol Rep 47, 6385–6391 (2020). https://doi.org/10.1007/s11033-020-05580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05580-7

Keywords

Navigation