Skip to main content
Log in

Differential expression of a novel gene BRE (TNFRSF1A modulator/BRCC45) in response to stress and biological signals

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Stress-responsive genes play critical roles in many biological functions that includes apoptosis, survival, differentiation and regeneration. We have identified a novel stress-responsive gene called BRE which interacts with TNF-receptor-1 and blocks the apoptotic effect of TNF-α. BRE enhances tumor growth in vivo and is up-regulated in hepatocellular and esophageal carcinomas. BRE also regulates the ubiquitination of the DNA repair complex BRCC, and the synthesis of steroid hormones. Here, we examined BRE-mRNA in cells after treatments with UV and ionizing radiation (IR). UV and IR treatment alone suppressed BRE-mRNA levels by more than 90% at 24 h, while hydroxyurea, fluorodeoxyuridine, aphidicolin, known inhibitors of S-phase DNA synthesis, had no significant effect. BRE protein expression was unaltered in cells treated with TNF-α, Interleukin-1 and Dexamethasone, while a threefold increase was observed following chorionic gonadotropin exposure. Although BRE plays a regulatory role in many different pathways, yet its expression is apparently under very stringent control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li HH, Aubrecht J, Fornace AJ Jr (2007) Toxicogenomics: overview and potential applications for the study of non-covalent DNA interacting chemicals. Mutat Res 623:98–108

    CAS  PubMed  Google Scholar 

  2. Niedernhofer LJ, Robbins PD (2008) Signaling mechanisms involved in the response to genotoxic stress and regulating lifespan. Int J Biochem Cell Biol 40:176–180

    Article  CAS  PubMed  Google Scholar 

  3. Wu ZH, Miyamoto S (2007) Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med 85:1187–1202

    Article  CAS  PubMed  Google Scholar 

  4. Wang S (2008) The promise of cancer therapeutics targeting the TNF related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 27:6207–6215

    Article  CAS  PubMed  Google Scholar 

  5. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107

    Article  CAS  PubMed  Google Scholar 

  6. Cretney E, Takeda K, Smyth MJ (2007) Cancer: novel therapeutic strategies that exploit the TNF related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway. Int J Biochem Cell Biol 39:280–286

    Article  CAS  PubMed  Google Scholar 

  7. Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20:1589–1598

    Article  CAS  PubMed  Google Scholar 

  8. MacEwan DJ (2002) TNF ligands and receptors—a matter of life and death. Brit J Pharmacol 135:855–875

    Article  CAS  Google Scholar 

  9. Wertz IE, Dixit VM (2008) Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev 19:313–324

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Yoo H, Becker FF, Ali-Osman F, Chan JYH (1995) Identification of a brain- and reproductive-organs-specific gene responsive to DNA damage and retinoic acid. Biochem Biophys Res Commun 206:764–774

    Article  CAS  PubMed  Google Scholar 

  11. Gu C, Castellino A, Chan JYH, Chao MV (1998) BRE: a modulator of TNF-α action. FASEB J 12:1101–1108

    CAS  PubMed  Google Scholar 

  12. Li Q, Ching AK, Chan BC, Chow SK, Lim PL, Ho TC, Ip WK, Wong CK, Lam CW, Lee KK, Chan JY, Chui YL (2004) A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem 279:52106–52116

    Article  CAS  PubMed  Google Scholar 

  13. Chan BC, Li Q, Chow SK, Ching AK, Liew CT, Lim PL, Lee KK, Chan JY, Chui YL (2005) BRE enhances in vivo growth of tumor cells. Biochem Biophys Res Commun 326:268–273

    Article  CAS  PubMed  Google Scholar 

  14. Ching AK, Li PS, Li Q, Chan BC, Chan JY, Lim PL, Pang JC, Chui YL (2001) Expression of human BRE in multiple isoforms. Biochem Biophys Res Commun 288:535–545

    Article  CAS  PubMed  Google Scholar 

  15. Ching AK, Li Q, Lim PL, Chan JY, Chui YL (2003) Expression of a conserved mouse stress-modulating gene, BRE: comparison with the human ortholog. DNA Cell Biol 22:497–504

    Article  CAS  PubMed  Google Scholar 

  16. Poon HK, Chan JY, Lee KH, Chow PH (2004) Tissue specific expression and sequence analysis of a stress responsive gene BRE in adult golden hamster (Mesocricetus auratus). Cell Tissue Res 316:305–313

    Article  CAS  PubMed  Google Scholar 

  17. Miao J, Panesar NS, Chan KT, Lai FM, Xia N, Wang Y, Johnson PJ, Chan JY (2001) Differential expression of a stress-modulating gene, BRE, in the adrenal gland, in adrenal neoplasia, and in abnormal adrenal tissues. J Histochem Cytochem 49:491–500

    CAS  PubMed  Google Scholar 

  18. Miao J, Chan KW, Chen GG, Chun SY, Xia NS, Chan JY, Panesar NS (2005) Blocking BRE expression in Leydig cells inhibits steroidogenesis by down-regulating 3b-hydroxysteroid dehydrogenase. J Endocrinol 185:507–517

    Article  CAS  PubMed  Google Scholar 

  19. Tang MK, Wang CM, Shan SW, Chui YL, Ching AK, Chow PH, Grotewold L, Chan JY, Lee KK (2006) BRE, a Novel TNF—R1 binding protein, alters the expression of tumour suppressors prohibitin and p53, and promotes cell growth arrest, as revealed by comparative proteomic analysis. Proteomics 6:2376–2385

    Article  CAS  PubMed  Google Scholar 

  20. Chan BC, Ching AK, To KF, Leung JC, Chen S, Li Q, Lai PB, Tang NL, Shaw PC, Chan JY, James AE, Lai KN, Lim PL, Lee KK, Chui YL (2008) BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene 27:1208–1217

    Article  CAS  PubMed  Google Scholar 

  21. Chen HB, Pan K, Tang MK, Chui YL, Su ZJ, Shen ZY, Xie W, Lee KKH (2008) Comparative proteomic analysis reveals differentially expressed proteins regulated by a potential tumor promoter, BRE, in human esophageal carcinoma cells. Biochem Cell Biol 86:302–311

    Article  CAS  PubMed  Google Scholar 

  22. Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R (2003) Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12:1087–1099

    Article  CAS  PubMed  Google Scholar 

  23. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:1198–1202

    Article  CAS  PubMed  Google Scholar 

  24. Wang B, Hurov K, Hofmann K, Elledge SJ (2009) NBA1, a new player in the Brca1 A complex is required for DNA damage resistance and checkpoint control. Genes Dev 23:729–739

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Choi JH, Yim H, Choi JS, Park BD, Cho SJ, Lee SK (2009) AT mutated Rad3 related) activity stabilizes Cdc6 and delays G2/M-phase entry during hydroxyurea-induced S-phase arrest of HeLa cells. Int J Biochem Cell Biol 41:1410–1420

    Article  CAS  PubMed  Google Scholar 

  26. Liu A, Yoshioka K, Salerno V, Hsieh P (2008) The mismatch repair-mediated cell cycle checkpoint response to fluorodeoxyuridine. J Cell Biochem 105:245–254

    Article  CAS  PubMed  Google Scholar 

  27. Parlanti E, Pascucci B, Terrados G, Blanco L, Dogliotti E (2004) Aphidicolin-resistant and -sensitive base excision repair in wild-type and DNA polymerase beta-defective mouse cells. DNA Repair (Amst) 3:703–710

    Article  CAS  Google Scholar 

  28. Prigent C, Satoh MS, Daly G, Barnes DE, Lindahl T (1994) Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol Cell Biol 14:310–317

    CAS  PubMed  Google Scholar 

  29. Chang KS, Fan YH, Andreeff M, Liu J, Mu ZM (1995) The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood 85:3646–3653

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by CUHK-UGC grant 2040519, RGC-earmark grant CUHK 4279/97 M, and a JiNan Univ. grant awarded to JYH Chan; and a Direct grant Project: 2041264, RGC Direct Allocation, CUHK, and a RGC-earmark grant awarded to YL Chui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Yeuk-Hon Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J.YH., Li, L., Miao, J. et al. Differential expression of a novel gene BRE (TNFRSF1A modulator/BRCC45) in response to stress and biological signals. Mol Biol Rep 37, 363–368 (2010). https://doi.org/10.1007/s11033-009-9796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9796-8

Keywords

Navigation