Skip to main content

Advertisement

Log in

Dideoxy polymorphism scanning, a gene-based method for marker development for genetic linkage mapping

  • Original Paper
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

One of the fastest growing areas of biotechnology research today is marker-assisted breeding of crops. As a prerequisite to marker assisted breeding, genetic linkage maps are currently being developed for many species. For many purposes gene-based markers are the marker type of choice. The biggest problem in genetic linkage mapping using gene-based markers is the identification of polymorphisms between the parents of the population. To improve the efficiency of marker generation, we have developed a simple, and reasonable-cost method of polymorphism detection termed dideoxy polymorphism scanning. Since most of the time required to develop a gene-based linkage map is spent in identification of useful polymorphisms, this method will significantly shorten the time required for map generation and therefore reduce the overall cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belanger FC, Plumley K, Day PR, Meyer WA (2003) Interspecific hybridization as a potential method for improvement of Agrostis species. Crop Sci 43:2172–2176

    Article  Google Scholar 

  • Belanger FC, Bonos S, Meyer WA (2004) Dollar spot resistant hybrids between creeping bentgrass and colonial bentgrass. Crop Sci 44:581–586

    Google Scholar 

  • Berger J, Suzuki T, Senti K-A, Stubbs J, Schaffner G, Dickson BJ (2001) Genetic mapping with SNP markers in Drosophila. Nat Genet 29:475–481

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vask D, Register III JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547

    Article  PubMed  CAS  Google Scholar 

  • Brady KP, Rowe LB, Her H, Stevens TJ, Eppig J, Sussma DJ, Sikela J, Beier DR (1997) Genetic mapping of 262 loci derived from expressed sequences in a murine interspecific cross using single-strand conformational polymorphism analysis. Genome Res 7:1085–1093

    PubMed  CAS  Google Scholar 

  • Chen JZ, Hebert PDN (1999) Directed termination of the polymerase chain reaction: Kinetics and applications in mutation detection. Genome 42:72–79

    Article  PubMed  CAS  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Felmlee TA, Liu Q, Whelen AC, Williams D, Sommer SS, Persing DH (1995) Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol 33:1617–1623

    PubMed  CAS  Google Scholar 

  • Furman I, Rieder MJ, da Ponte S, Carrington D, Nickerson DA, Kruglyak L, Markianos K (2004) Sequence-based linkage analysis. Am J Hum Genet 75:647–653

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162

    Article  PubMed  CAS  Google Scholar 

  • Gut IG (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17:475–492

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  PubMed  CAS  Google Scholar 

  • Jones K (1956) Species differentiation in Agrostis. Part II. The significance of chromosome pairing in the tetraploid hybrids of Agrostis canina subsp. montana Hartmn., A. tenuis Sibth. and A. stolonifera L. J Genet 54:377–393

    Article  Google Scholar 

  • Martincic D, Zimmerman SA, Ware RE, Sun M-F, Whitlock JA, Gailani D (1998) Identification of mutations and polymorphisms in the factor XI genes of an African American family by dideoxyfingerprinting. Blood 92:3309–3317

    PubMed  CAS  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    Article  PubMed  CAS  Google Scholar 

  • Puck JM, Pepper AE, Henthorn PS, Candotti F, Isakov J, Whitwam T, Conley ME, Fischer RE, Rosenblatt HM, Small TN, Buckley RH (1997) Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89:1968–1977

    PubMed  CAS  Google Scholar 

  • Rafalski A (2002a) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  Google Scholar 

  • Rafalski JA (2002b) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, New Jersey, USA, pp 365–386

  • Ruemmele BA (2003) Agrostis capillaris (Agrostis tenuis Sibth.) colonial bentgrass. In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. John Wiley & Sons, Hoboken, New Jersey, USA, pp 187–200

  • Rungis D, Hamberger B, Berube Y, Wilkin J, Bohlmann J, Ritland K (2005) Efficient genetic mapping of single nucleotide polymorphisms based upon DNA mismatch digestion. Mol Breed 16:261–270

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sarkar G, Yoon HS, Sommer SS (1992) Dideoxy fingerprinting (ddF): a rapid and efficient screen for the presence of mutations. Genomics 13:441–443

    Article  PubMed  CAS  Google Scholar 

  • Schlotterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  CAS  Google Scholar 

  • Shattuck-Eidens DM, Bell RN, Neuhausen SL, Helentjaris T (1990) DNA sequence variation within maize and melon: observations from polymerase chain reaction amplification and direct sequencing. Genetics 126:207–217

    PubMed  CAS  Google Scholar 

  • Syvanen A-C (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  PubMed  CAS  Google Scholar 

  • The International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Google Scholar 

  • Warnke SE (2003) Creeping bentgrass (Agrostis stolonifera L.). In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. John Wiley & Sons, Hoboken, New Jersey, USA, pp 175–185

  • Warnke SE, Barker RE, Jung G, Sim SC, Mian R, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109:294–304

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Oefner PJ (2001) Denaturing high-performance liquid chromatography: a review. Hum Mutat 17:439–474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported with funds provided by the Rutgers Center for Turfgrass Science, the United States Golf Association, and the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faith C. Belanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotter, D., Warnke, S.E. & Belanger, F.C. Dideoxy polymorphism scanning, a gene-based method for marker development for genetic linkage mapping. Mol Breeding 19, 267–274 (2007). https://doi.org/10.1007/s11032-006-9061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9061-y

Keywords

Navigation