Skip to main content

Advertisement

Log in

The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Estrogen is synthesized from cholesterol and high cholesterol levels are suggested to be associated with increased risk of estrogen receptor(ER)-positive breast cancer. The cholesterol metabolite 27-hydroxycholesterol (27-OHC) was recently identified as a selective estrogen receptor modulator (SERM) and may therefore impact breast cancer progression. However, the mechanisms by which 27-OHC may contribute to breast cancer are not all known. We determined the extent to which 27-OHC regulates cell proliferation in MCF7 ER-positive breast cancer cell line involving the tumor suppressor protein p53. We found that treatment of MCF7 cells with 27-OHC resulted reduced p53 transcriptional activity. Conversely, treatment of the ER-negative MDA-MB 231 cells with 27-OHC induced no significant change in p53 activity. Exposure of MCF7 cells to 27-OHC was also associated with increased protein levels of the E3 ubiquitin protein ligase MDM2 and decreased levels of p53. Moreover, 27-OHC also enhanced physical interaction between p53 and MDM2. Furthermore, 27-OHC-induced proliferation was attenuated using either the p53 activator Tenovin-1 or the MDM2 inhibitor Nutlin-3 and Mdm2 siRNA. Taken together, our results indicate that 27-OHC may contribute to ER-positive breast cancer progression by disrupting constitutive p53 signaling in an MDM2-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. How many women get breast cancer? http://www.cancer.org/cancer/breastcancer/overviewguide/breast-cancer-overview-key-statistics. Accessed 7 Jul 2014

  2. Buzdar AU (2004) Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the international letrozole breast cancer group. J Clin Oncol 22:3199–3200. doi:10.1200/JCO.2004.99.058

    Article  PubMed  Google Scholar 

  3. Baum M, Budzar AU, Cuzick J et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359:2131–2139

    Article  CAS  PubMed  Google Scholar 

  4. Franco S, Perez A, Tan-Chiu E et al (2004) Response to fulvestrant in heavily pretreated postmenopausal women: a single-center experience. Breast Cancer Res Treat 88:103–108. doi:10.1007/s10549-004-0748-7

    Article  CAS  PubMed  Google Scholar 

  5. Nelson ER, Wardell SE, Jasper JS et al (2013) 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–1098. doi:10.1126/science.1241908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wu Q, Ishikawa T, Sirianni R et al (2013) 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 5:637–645. doi:10.1016/j.celrep.2013.10.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Umetani M, Shaul PW (2011) 27-Hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab 22:130–135. doi:10.1016/j.tem.2011.01.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Duane WC, Javitt NB (1999) 27-Hydroxycholesterol: production rates in normal human subjects. J Lipid Res 40:1194–1199

    CAS  PubMed  Google Scholar 

  9. Cruz P, Torres C, Ramírez ME et al (2010) Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol. Exp Ther Med 1:531–536. doi:10.3892/etm_00000084

    PubMed Central  CAS  PubMed  Google Scholar 

  10. DuSell CD, Umetani M, Shaul PW et al (2008) 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol 22:65–77. doi:10.1210/me.2007-0383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Miller LD, Smeds J, George J et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102:13550–13555. doi:10.1073/pnas.0506230102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Khoo KH, Hoe KK, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13:217–236. doi:10.1038/nrd4236

    Article  CAS  PubMed  Google Scholar 

  13. Coates AS, Millar EK, O’Toole SA et al (2012) Prognostic interaction between expression of p53 and estrogen receptor in patients with node-negative breast cancer: results from IBCSG Trials VIII and IX. Breast Cancer Res 14:R143. doi:10.1186/bcr3348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pharoah PD, Day NE, Caldas C (1999) Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80:1968–1973. doi:10.1038/sj.bjc.6690628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Van der Burg SH, de Cock K, Menon AG et al (2001) Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur J Immunol 31:146–155. doi:10.1002/1521-4141(200101)31:1<146:AID-IMMU146>3.0.CO;2-T

    Article  PubMed  Google Scholar 

  16. Walerych D, Napoli M, Collavin L, Del Sal G (2012) The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 33:2007–2017. doi:10.1093/carcin/bgs232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ahn SH, Kim HJ, Han W et al (2013) Effect modification of hormonal therapy by p53 status in invasive breast cancer. J Breast Cancer 16:386–394. doi:10.4048/jbc.2013.16.4.386

    Article  PubMed Central  PubMed  Google Scholar 

  18. Moll UM, Petrenko O (2003) The MDM2-p53 Interaction. Mol Cancer Res 1:1001–1008

    CAS  PubMed  Google Scholar 

  19. Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24:1580–1589. doi:10.1101/gad.1941710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dolfi SC, Jäger AV, Medina DJ et al (2014) Fulvestrant treatment alters MDM2 protein turnover and sensitivity of human breast carcinoma cells to chemotherapeutic drugs. Cancer Lett 350:52–60. doi:10.1016/j.canlet.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  21. Gao C-F, Xie Q, Su Y-L et al (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A 102:10528–10533. doi:10.1073/pnas.0504367102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wasielewski M, Elstrodt F, Klijn JGM et al (2006) Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines. Breast Cancer Res Treat 99:97–101. doi:10.1007/s10549-006-9186-z

    Article  CAS  PubMed  Google Scholar 

  24. Okumura N, Saji S, Eguchi H et al (2002) Estradiol stabilizes p53 protein in breast cancer cell line, MCF-7. Jpn J Cancer Res 93:867–873. doi:10.1111/j.1349-7006.2002.tb01331.x

    Article  CAS  PubMed  Google Scholar 

  25. Lee AV, Oesterreich S, Davidson NE (2015) MCF-7 cells–changing the course of breast cancer research and care for 45 years. J Natl Cancer Inst 107:djv073. doi:10.1093/jnci/djv073

    Article  PubMed  Google Scholar 

  26. Comşa Ş, Cîmpean AM, Raica M (2015) The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res 35:3147–3154

    PubMed  Google Scholar 

  27. Zheng L, Ren JQ, Li H et al (2004) Downregulation of wild-type p53 protein by HER-2/neu mediated PI3 K pathway activation in human breast cancer cells: its effect on cell proliferation and implication for therapy. Cell Res 14:497–506. doi:10.1038/sj.cr.7290253

    Article  CAS  PubMed  Google Scholar 

  28. Lim LY, Vidnovic N, Ellisen LW, Leong C-O (2009) Mutant p53 mediates survival of breast cancer cells. Br J Cancer 101:1606–1612. doi:10.1038/sj.bjc.6605335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Alarcon-Vargas D (2002) p53-Mdm2–the affair that never ends. Carcinogenesis 23:541–547. doi:10.1093/carcin/23.4.541

    Article  CAS  PubMed  Google Scholar 

  30. Lain S, Hollick JJ, Campbell J et al (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463. doi:10.1016/j.ccr.2008.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Park EJ, Choi KS, Yoo YH, Kwon TK (2013) Nutlin-3, a small-molecule MDM2 inhibitor, sensitizes Caki cells to TRAIL-induced apoptosis through p53-mediated PUMA upregulation and ROS-mediated DR5 upregulation. Anticancer Drugs 24:260–269. doi:10.1097/CAD.0b013e32835c0311

    Article  CAS  PubMed  Google Scholar 

  32. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983. doi:10.1101/gad.12.19.2973

    Article  CAS  PubMed  Google Scholar 

  33. Sherr C (2004) Principles of tumor suppression. Cell 116:235–246. doi:10.1016/S0092-8674(03)01075-4

    Article  CAS  PubMed  Google Scholar 

  34. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  35. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112. doi:10.1016/S1535-6108(02)00102-2

    Article  CAS  PubMed  Google Scholar 

  36. Yu X, Narayanan S, Vazquez A, Carpizo DR (2014) Small molecule compounds targeting the p53 pathway: are we finally making progress? Apoptosis. doi:10.1007/s10495-014-0990-3

    PubMed Central  Google Scholar 

  37. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22

    Article  CAS  PubMed  Google Scholar 

  38. Jankowitz RC, Davidson NE (2013) Adjuvant endocrine therapy for breast cancer: how long is long enough? Oncology (Williston Park) 27(1210–6):1224

    Google Scholar 

  39. Hasson SP, Rubinek T, Ryvo L, Wolf I (2013) Endocrine resistance in breast cancer: focus on the phosphatidylinositol 3-Kinase/Akt/Mammalian target of rapamycin signaling pathway. Breast Care (Basel) 8:248–255. doi:10.1159/000354757

    Article  Google Scholar 

  40. Fu X, Menke JG, Chen Y et al (2001) 27-Hydroxycholesterol is an endogenous ligand for Liver X Receptor in cholesterol-loaded Cells. J Biol Chem 276:38378–38387

    Article  CAS  PubMed  Google Scholar 

  41. Ma D, Liu W, Wang Y (2014) ApoA-I or ABCA1 expression suppresses fatty acid synthesis by reducing 27-hydroxycholesterol levels. Biochimie. doi:10.1016/j.biochi.2014.04.010

    Google Scholar 

  42. Ahern TP, Pedersen L, Tarp M et al (2011) Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst 103:1461–1468. doi:10.1093/jnci/djr291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Momand J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459. doi:10.1093/nar/26.15.3453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wang H, Zeng X, Oliver P et al (1999) MDM2 oncogene as a target for cancer therapy: an antisense approach. Int J Oncol 15:653–660

    CAS  PubMed  Google Scholar 

  45. Jones SN, Hancock AR, Vogel H et al (1998) Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci 95:15608–15612. doi:10.1073/pnas.95.26.15608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Tsvetkov P, Reuven N, Shaul Y (2010) Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ 17:103–108. doi:10.1038/cdd.2009.67

    Article  CAS  PubMed  Google Scholar 

  47. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137:609–622. doi:10.1016/j.cell.2009.04.050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Miyachi M, Kakazu N, Yagyu S et al (2009) Restoration of p53 pathway by nutlin-3 induces cell cycle arrest and apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res 15:4077–4084. doi:10.1158/1078-0432.CCR-08-2955

    Article  CAS  PubMed  Google Scholar 

  49. Poyurovsky MV, Katz C, Laptenko O et al (2010) The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 17:982–989. doi:10.1038/nsmb.1872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Speetjens FM, Kuppen PJK, Welters MJP et al (2009) Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res 15:1086–1095. doi:10.1158/1078-0432.CCR-08-2227

    Article  CAS  PubMed  Google Scholar 

  51. Sasaki R, Shirakawa T, Zhang ZJ et al (2001) Additional gene therapy with Ad5CMV-p53 enhanced the efficacy of radiotherapy in human prostate cancer cells. Int J Radiat Oncol Biol Phys 51:1336–1345

    Article  CAS  PubMed  Google Scholar 

  52. Song SU, Boyce FM (2001) Combination treatment for osteosarcoma with baculoviral vector mediated gene therapy (p53) and chemotherapy (adriamycin). Exp Mol Med 33:46–53. doi:10.1038/emm.2001.9

    Article  CAS  PubMed  Google Scholar 

  53. Rejeeth C, Kannan S (2014) p53 gene therapy of human breast carcinoma: using a transferrin-modified silica nanoparticles. Breast Cancer. doi:10.1007/s12282-014-0537-z

    PubMed  Google Scholar 

  54. Obermiller PS, Tait DL, Holt JT (2000) Gene therapy for carcinoma of the breast: therapeutic genetic correction strategies. Breast Cancer Res 2:28–31. doi:10.1186/bcr26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bry on Grove and Sarah Abrahamson for their technical assistance with the confocal microscopy.

Disclaimer

The contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Funding

University of North Dakota School of Medicine seed grant to OG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Ghribi.

Ethics declarations

Conflict of Interest

The authors do not have any conflicts of interests to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, S., Ohm, J.E., Dhasarathy, A. et al. The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol Cell Biochem 410, 187–195 (2015). https://doi.org/10.1007/s11010-015-2551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2551-7

Keywords

Navigation