Skip to main content
Log in

TGF-β-induced hCG-β regulates redox homeostasis in glioma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)—the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β–hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β–hCG-β link that regulates redox homeostasis in glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11:S44–S51

    CAS  PubMed  Google Scholar 

  2. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  CAS  PubMed  Google Scholar 

  3. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  CAS  PubMed  Google Scholar 

  4. Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160

    Article  CAS  PubMed  Google Scholar 

  5. Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    Article  CAS  PubMed  Google Scholar 

  6. Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327

    Article  CAS  PubMed  Google Scholar 

  7. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  8. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang XF, Rich JN (2004) SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745

    CAS  PubMed  Google Scholar 

  9. Tran TT, Uhl M, Ma JY, Janssen L, Sriram V, Aulwurm S, Kerr I, Lam A, Webb HK, Kapoun AM, Kizer DE, McEnroe G, Hart B, Axon J, Murphy A, Chakravarty S, Dugar S, Protter AA, Higgins LS, Wick W, Weller M, Wong DH (2007) Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 9:259–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-beta. Cancer Res 72:4119–4129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291

    Article  CAS  PubMed  Google Scholar 

  12. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, Morgan FJ, Isaacs NW (1994) Crystal structure of human chorionic gonadotropin. Nature 369:455–461

    Article  CAS  PubMed  Google Scholar 

  13. Sheaff MT, Martin JE, Badenoch DF, Baithun SI (1996) Beta hCG as a prognostic marker in adenocarcinoma of the prostate. J Clin Pathol 49:329–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ruddon RW, Bryan AH, Meade-Cobun KS, Pollack VA (1980) Production of human chorionic gonadotropin and its subunits by human tumors growing in nude mice. Cancer Res 40:4007–4012

    CAS  PubMed  Google Scholar 

  15. Huhtaniemi I, Rulli S, Ahtiainen P, Poutanen M (2005) Multiple sites of tumorigenesis in transgenic mice overproducing hCG. Mol Cell Endocrinol 234:117–126

    Article  CAS  PubMed  Google Scholar 

  16. Acevedo HF, Tong JY, Hartsock RJ (1995) Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer 76:1467–1475

    Article  CAS  PubMed  Google Scholar 

  17. Iles RK, Delves PJ, Butler SA (2010) Does hCG or hCGbeta play a role in cancer cell biology? Mol Cell Endocrinol 329:62–70

    Article  CAS  PubMed  Google Scholar 

  18. Berndt S, Blacher S, Munaut C, Detilleux J, d’Hauterive SP, Huhtaniemi I, Evain-Brion D, Noel A, Fournier T, Foidart JM (2013) Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-beta receptor activation. FASEB J 27:1309–1321

    Article  CAS  PubMed  Google Scholar 

  19. Guo X, Liu G, Schauer IG, Yang G, Mercado-Uribe I, Yang F, Zhang S, He Y, Liu J (2011) Overexpression of the beta subunit of human chorionic gonadotropin promotes the transformation of human ovarian epithelial cells and ovarian tumorigenesis. Am J Pathol 179:1385–1393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Butler SA, Ikram MS, Mathieu S, Iles RK (2000) The increase in bladder carcinoma cell population induced by the free beta subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br J Cancer 82:1553–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jankowska A, Andrusiewicz M, Grabowski J, Nowak-Markwitz E, Warchol JB (2008) Coexpression of human chorionic gonadotropin beta subunit and its receptor in nontrophoblastic gynecological cancer. Int J Gynecol Cancer 18:1102–1107

    Article  CAS  PubMed  Google Scholar 

  22. Bose A, Huhtaniemi I, Singh O, Pal R (2013) Synergistic activation of innate and adaptive immune mechanisms in the treatment of gonadotropin-sensitive tumors. PLoS One 8:e61288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kajihara T, Uchino S, Suzuki M, Itakura A, Brosens JJ, Ishihara O (2011) Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil Steril 95:1302–1307

    Article  CAS  PubMed  Google Scholar 

  24. Overstreet JM, Samarakoon R, Meldrum KK, Higgins PJ (2014) Redox control of p53 in the transcriptional regulation of TGF-beta1 target genes through SMAD cooperativity. Cell Signal 26:1427–1436

    Article  CAS  PubMed  Google Scholar 

  25. Song Y, Keelan J, France JT (1996) Activin-A stimulates, while transforming growth factor beta 1 inhibits, chorionic gonadotrophin production and aromatase activity in cultured human placental trophoblasts. Placenta 17:603–610

    Article  CAS  PubMed  Google Scholar 

  26. Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6:2544–2553

    Article  CAS  PubMed  Google Scholar 

  27. Dixit D, Sharma V, Ghosh S, Koul N, Mishra PK, Sen E (2009) Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radic Biol Med 47:364–374

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Li C, Du L, Zhou Y, Wu W (2013) Human chorionic gonadotropin beta induces migration and invasion via activating ERK1/2 and MMP-2 in human prostate cancer DU145 cells. PLoS One 8:e54592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tewari R, Choudhury SR, Ghosh S, Mehta VS, Sen E (2012) Involvement of TNFalpha-induced TLR4-NF-kappaB and TLR4-HIF-1alpha feed-forward loops in the regulation of inflammatory responses in glioma. J Mol Med (Berl) 90:67–80

    Article  CAS  Google Scholar 

  30. Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2011) Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271

    Article  Google Scholar 

  31. Dixit D, Ghildiyal R, Anto NP, Sen E (2014) Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis 5:e1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Szturmowicz M, Slodkowska J, Zych J, Rudzinski P, Sakowicz A, Rowinska-Zakrzewska E (1999) Frequency and clinical significance of beta-subunit human chorionic gonadotropin expression in non-small cell lung cancer patients. Tumour Biol 20:99–104

    Article  CAS  PubMed  Google Scholar 

  33. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  34. Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D (2012) Autophagy in idiopathic pulmonary fibrosis. PLoS One 7:e41394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ishikawa F, Kaneko E, Sugimoto T, Ishijima T, Wakamatsu M, Yuasa A, Sampei R, Mori K, Nose K, Shibanuma M (2014) A mitochondrial thioredoxin-sensitive mechanism regulates TGF-beta-mediated gene expression associated with epithelial-mesenchymal transition. Biochem Biophys Res Commun 443:821–827

    Article  CAS  PubMed  Google Scholar 

  36. Samarakoon R, Dobberfuhl AD, Cooley C, Overstreet JM, Patel S, Goldschmeding R, Meldrum KK, Higgins PJ (2013) Induction of renal fibrotic genes by TGF-beta1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal 25:2198–2209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellora Sen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2014_2237_MOESM1_ESM.tif

ESM 1 ROS generation in glioma cells treated with TGF-β in the presence or absence of SB431542 as determined by DCFDA staining. Treatment with SB431542 increases ROS generation as determined by DCFDA staining. This is concurrent with the increased mitochondrial localization of ROS. Differential interference contrast (DIC) and immunofluorescence (DCFDA; 10 μM and Mitotracker Red; 100 nM) images showing ROS levels in U87MG glioma cells treated with TGF-β in the presence and absence of SB431542. Images were taken at 40x magnification. Scale bar is representative of 50 µm distance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Ghosh, S., Sinha, S. et al. TGF-β-induced hCG-β regulates redox homeostasis in glioma cells. Mol Cell Biochem 399, 105–112 (2015). https://doi.org/10.1007/s11010-014-2237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2237-6

Keywords

Navigation