Skip to main content
Log in

FMLP-, thapsigargin-, and H2O2-evoked changes in intracellular free calcium concentration in lymphocytes and neutrophils of type 2 diabetic patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type 2 diabetic (T2DM) patients are immune-compromised having a higher susceptibility to infections and long-term complications in different parts of the body contributing to increased morbidity and mortality. A derangement in the homeostasis of intracellular free calcium concentration [Ca2+]i is known to be associated with several diseases in the body including T2DM. Both neutrophils and lymphocytes play active protective roles in host immune response to infection showing impairment in microbicidal functions including phagocytosis and chemotaxis which are calcium-dependent processes. This study evaluated the process of [Ca2+]i mobilization from both neutrophils and lymphocytes taken from blood of both T2DM patients and healthy age-matched control subjects investigating the effect of N-formyl-methionyl-leucyl-phenylalanine (fMLP), thapsigargin (TG), and hydrogen peroxide (H2O2) on [Ca2+]i homeostasis. This study employed isolated peripheral blood neutrophils and lymphocytes from 24 T2DM patients and 24 healthy volunteers. Either neutrophils or lymphocytes were stimulated separately with fMLP, TG, or H2O2. Induced changes in [Ca2+] in both neutrophils and lymphocytes were evaluated using spectrofluorometric methods. Stimulation of human neutrophils and lymphocytes with fMLP, TG, or H2O2 in the presence of [Ca2+]o resulted in significant decreases in [Ca2+]i mobilization from T2DM patients compared with healthy controls. These data indicate that neutrophils and lymphocytes from T2DM patients are less responsive to calcium mobilizing agents compared with granulocytes from healthy controls and this is possibly due to the hyperglycemia. The results suggest that agonist-evoked decrease in [Ca2+]i in immune cells might be one of the possible mechanisms of impaired immunity in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar PJ, Clark M (2007) Diabetes mellitus and other disorders of metabolism. In: Kumar PJ, Clark M (eds) Textbook of medicine. Saunders, London, pp 1069–1122

    Google Scholar 

  2. Marhoffer W, Stein M, Maeser E, Federlin K (1992) Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes. Diabetes Care 15:256–260

    Article  CAS  PubMed  Google Scholar 

  3. Alexiewicz JM, Kumar D, Smogorzewski M, Klin M, Massry SG (1995) Polymorphonuclear leukocytes in non-insulin-dependent diabetes mellitus: abnormalities in metabolism and function. Ann Intern Med 123:919–924

    Article  CAS  PubMed  Google Scholar 

  4. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11

    CAS  PubMed  Google Scholar 

  5. Petersen OH, Petersen CCH, Kasai H (1994) Calcium and hormone action. Ann Rev Physiol 56:297–319

    Article  CAS  Google Scholar 

  6. Roitt I, Brostoff J, Male D (1996) Immunology, 4th edn. Mosby-Wolfe, London

    Google Scholar 

  7. Vlahos CJ, Matter WF, Brown RF, Traynor-Kaplan AE, Heyworth PG, Prossnitz ER, Ye RD, Marder P, Schelm JA, Rothfuss KJ (1995) Investigation of neutrophil signal transduction using a specific inhibitor of phosphatidylinositol 3-kinase. J Immunol 154:2413–2422

    CAS  PubMed  Google Scholar 

  8. Hu TH, Bei L, Qian ZM, Shen X (1999) Intracellular free calcium regulates the onset respiratory burst in human neutrophils activated by phorbol myristate acetate. Cell Signal 11:355–360

    Article  CAS  PubMed  Google Scholar 

  9. Clausen T, Elbrink J, Martin BR (1974) Insulin controlling calcium distribution in muscle and fat cells. Acta Endocrinol 77:137–143

    CAS  Google Scholar 

  10. Jakubczak B, Wasik M, Popko K, Demkow U (2006) Kinetics of calcium ion concentration accompanying signal transduction in neutrophils from children with increased susceptibility to infections. J Physiol Pharmacol 57:131–137

    PubMed  Google Scholar 

  11. Repine JE, Clawson CC, Goetz FC (1980) Bactericidal function of neutrophils from patients with acute bacterial infections and from diabetics. J Infect Dis 142:869–875

    Article  CAS  PubMed  Google Scholar 

  12. Berliner S, Rogowski O, Rotstein R, Fusman R, Shapira I, Bornstein NM (2000) Activated polymorphonuclear leukocytes and monocytes in the peripheral blood of patients with ischemic heart and brain conditions correspond to the presence of multiple risk factors for atherothrombosis. Cardiology 94:19–25

    Article  CAS  PubMed  Google Scholar 

  13. McDonagh PF, Hokama JY, Copeland JG, Reynolds JM (1997) The blood contribution to early myocardial reperfusion injury is amplified in diabetes. Diabetes 46:1859–1867

    Article  CAS  PubMed  Google Scholar 

  14. Jaconi ME, Rivest RW, Schlegel W, Wollheim CB, Pittet D, Lew PD (1988) Spontaneous and chemoattractant-induced oscillations of cytosolic free calcium in single adherent human neutrophils. J Biol Chem 263:10557–10560

    CAS  PubMed  Google Scholar 

  15. Lew DP (1989) Receptor signalling and intracellular calcium in neutrophil activation. Eur J Clin Invest 19:338–346

    Article  CAS  PubMed  Google Scholar 

  16. Levy J, Gavin JR III, Sowers JR (1994) Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med 96:260–273

    Article  CAS  PubMed  Google Scholar 

  17. Alteraifi AM, Zhelev DV (1997) Transient increase of free cytosolic calcium during neutrophil motility responses. J Cell Sci 110:1967–1977

    CAS  PubMed  Google Scholar 

  18. Levy J, Rempinski D, Kuo TH (1994) Hormone-specific defect in insulin regulation of (Ca2++Mg2+)-adenosine triphosphatase activity in kidney membranes from streptozocin non-insulin-dependent diabetic rats. Metabolism 43:604–613

    Article  CAS  PubMed  Google Scholar 

  19. Kelly KL, Deeney JT, Corkey BE (1989) Cytosolic free calcium in adipocytes. Distinct mechanisms of regulation and effects on insulin action. J Biol Chem 264:12754–12757

    CAS  PubMed  Google Scholar 

  20. Popko K, Winklewski P, Jakubczak B, Wasilewski R, Wasik M (2003) Changes in intracellular calcium free and calcium stored balance in children granulocytes after stimulation: preliminary results. Centr Eur J Immunol 28:62–66

    CAS  Google Scholar 

  21. Alvarez J, Montero M, Garcia-Sancho J (1992) Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores. FASEB J 6:786–792

    CAS  PubMed  Google Scholar 

  22. Fasolato C, Hoth M, Penner R (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 268:20737–20740

    CAS  PubMed  Google Scholar 

  23. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814

    Article  CAS  PubMed  Google Scholar 

  24. Sargeant P, Farndale RW, Sage S (1993) ADP- and thapsigargin-evoked Ca2+entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem 268:18151–18156

    CAS  PubMed  Google Scholar 

  25. Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499

    Article  CAS  PubMed  Google Scholar 

  26. Rosado JA, Sage SO (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Trends Cardiovasc Med 10:327–332

    Article  CAS  PubMed  Google Scholar 

  27. Advani A, Marshall SM, Thomas TH (2002) Impaired neutrophil actin assembly causes persistent CD11b expression and reduced primary granule exocytosis in type 2 diabetes. Diabetologia 45:719–727

    Article  CAS  PubMed  Google Scholar 

  28. Otton R, da Silva DO, Campoio TR, Silveira LR, de Souza MO, Hatanaka E, Curi R (2007) Non-esterified fatty acids and human lymphocyte death: a mechanism that involves calcium release and oxidative stress. J Endocrinol 195:133–143

    Article  CAS  PubMed  Google Scholar 

  29. Genestier AL, Michallet MC, Prévost G, Bellot G, Chalabreysse L, Peurol S, Thivolet F, Etienne J, Lina G, Vallette FM, Vandenesch F, Genestier L (2005) Staphylococcus aureus Panton–Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J Clin Invest 115:3117–3127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  31. Espino J, Mediero M, Lozano G, Bejarano I, Ortiz, Garcia J, Pariente JA, Rodriguez AB (2009) Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients. Reprod Biol Endocrinol 7:1–11

    Article  Google Scholar 

  32. González Flecha FL, Bermúdez MC, Cédola NV, Gag Liardio JJ, Rossi JP (1990) Decreased Ca2(+)-ATPase activity after glycosylation of erythrocyte membranes in vivo and in vitro. Diabetes 39:704–711

    Article  Google Scholar 

  33. Schaffer SW, Mozaffari M (1996) Abnormal mechanical function in diabetes: relation to myocardial calcium handling. Coron Artery Dis 7:109–115

    Article  CAS  PubMed  Google Scholar 

  34. Krol E, Agueel R, Banue S, Smogorzewski M, Kumar D, Massry SG (2003) Amlodipine reverses the elevation in [Ca2+]i and the impairment of phagocytosis in PMNLs of NIDM patients. Kidney Inter 64:2188–2195

    Article  CAS  Google Scholar 

  35. D’Souza AJ, Howarth CF, Woods NM, Singh J (2009) Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart: a review. Mol Cell Biochem 331(1/2):89–116

    Article  PubMed  Google Scholar 

  36. Roe MW, Philipson LH, Frangakis CJ, Kuznestov A, Mertz RJ, Lancaster ME (1994) Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem 269:18279–18282

    CAS  PubMed  Google Scholar 

  37. Pierce GN, Russell JC (1997) Regulation of intracellular Ca2+ in the heart during diabetes. Cardiovasc Res 34:41–47

    Article  CAS  PubMed  Google Scholar 

  38. Volzke H, Gruska S, Vogelgesang D, Kerner W, Kraatz G, Rettig R (2006) Intracellular calcium and sodium–lithium countertransport in type 2 diabetic patients with and without albuminuria. Endocrine J 53:773–781

    Article  Google Scholar 

  39. McManus LM, Bloodworth RC, Prihoda TJ, Blodgett JL, Pinckard RN (2001) Agonist-dependent failure of neutrophil function in diabetes correlates with extent of hyperglycemia. J Leukoc Biol 70:395–404

    CAS  PubMed  Google Scholar 

  40. Geiszt M, Kaldi K, Szeberenyi JB, Ligeti E (1995) Thapsigargin inhibits Ca2+ entry in human neutrophil granulocytes. Biochem J 305:525–528

    CAS  PubMed  Google Scholar 

  41. Ishii H, Umeda F, Hashimoto T, Nawata H (1991) Increased intracellular calcium mobilization in platelets from patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 34:332–336

    Article  CAS  PubMed  Google Scholar 

  42. Solini A, Di Virgilio F, Sfriso A, Brushegin M, Crepaldi G, Nosadini R (1996) Intracellular calcium handling by fibroblasts from non-insulin dependent diabetic patients with or without hypertension and micro-albuminuria. Kidney Inter 50:618–626

    Article  CAS  Google Scholar 

  43. Favero TG, Zable AC, Abramson JJ (1995) Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem 270:25557–25563

    Article  CAS  PubMed  Google Scholar 

  44. Pariente JA, Camello C, Camello PJ, Salido GM (2001) Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol 179:27–35

    Article  CAS  PubMed  Google Scholar 

  45. Bejarano I, Terrón MP, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2007) Hydrogen peroxide increases the phagocytic function of human neutrophils by calcium mobilisation. Mol Cell Biochem 296:77–84

    Article  CAS  PubMed  Google Scholar 

  46. Ueda N, Shah SV (1992) Role of intracellular calcium in hydrogen peroxide induced renal tubular cell injury. Am J Physiol 263:F214–F221

    CAS  PubMed  Google Scholar 

  47. Rosado JA, López JJ, Harper AG, Harper MT, Redondo PC, Pariente JA, Sage SO, Salido GM (2004) Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem 279:29231–29235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to all the research staff members of Department of Physiology, University of Extremadura, Badajoz, Spain and University of Central Lancashire, Lancashire Teaching Hospitals NHS Trust, UK for their support. All the Type 2 Diabetic patients and controls who have given their blood samples for this work are greatly acknowledged. Dr J. Espino is a recipient of a research grant from the Ministerio de Educación, Cultura y Deporte (AP2009-0753).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaipaul Singh.

Additional information

Shanti S. Kappala and Javier Espino have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappala, S.S., Espino, J., Pariente, J.A. et al. FMLP-, thapsigargin-, and H2O2-evoked changes in intracellular free calcium concentration in lymphocytes and neutrophils of type 2 diabetic patients. Mol Cell Biochem 387, 251–260 (2014). https://doi.org/10.1007/s11010-013-1890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1890-5

Keywords

Navigation