Skip to main content

Advertisement

Log in

E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  PubMed  CAS  Google Scholar 

  2. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274(5293):1664–1672

    Article  PubMed  CAS  Google Scholar 

  3. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Ann Rev Genet 36:617–656

    Article  PubMed  CAS  Google Scholar 

  4. Motoyama N, Naka K (2004) DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 14(1):11–16

    Article  PubMed  CAS  Google Scholar 

  5. Li L, Zou L (2005) Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 94(2):298–306

    Article  PubMed  CAS  Google Scholar 

  6. Attwooll C, Lazzerini Denchi E, Helin K (2004) The E2F family: specific functions and overlapping interests. EMBO J 23(24):4709–4716

    Article  PubMed  CAS  Google Scholar 

  7. Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15(14):1833–1844

    PubMed  CAS  Google Scholar 

  8. Hallstrom TC, Mori S, Nevins JR (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13(1):11–22

    Article  PubMed  CAS  Google Scholar 

  9. Carcagno AL, Ogara MF, Sonzogni SV, Marazita MC, Sirkin PF, Ceruti JM, Canepa ET (2009) E2F1 transcription is induced by genotoxic stress through ATM/ATR activation. IUBMB Life 61(5):537–543

    Article  PubMed  CAS  Google Scholar 

  10. Roussel MF (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18(38):5311–5317

    Article  PubMed  CAS  Google Scholar 

  11. Canepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59(7):419–426

    Article  PubMed  CAS  Google Scholar 

  12. Ceruti JM, Scassa ME, Flo JM, Varone CL, Canepa ET (2005) Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells. Oncogene 24(25):4065–4080

    PubMed  CAS  Google Scholar 

  13. Scassa ME, Marazita MC, Ceruti JM, Carcagno AL, Sirkin PF, Gonzalez-Cid M, Pignataro OP, Canepa ET (2007) Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair. DNA Repair (Amst) 6(5):626–638

    Article  CAS  Google Scholar 

  14. Park KK, Deok Ahn J, Lee IK, Magae J, Heintz NH, Kwak JY, Lee YC, Cho YS, Kim HC, Chae YM, Ho Kim Y, Kim CH, Chang YC (2003) Inhibitory effects of novel E2F decoy oligodeoxynucleotides on mesangial cell proliferation by coexpression of E2F/DP. Biochem Biophys Res Commun 308(4):689–697

    Article  PubMed  CAS  Google Scholar 

  15. Giono LE, Varone CL, Canepa ET (2001) 5-Aminolevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB). Biochem J 353(Pt 2):307–316

    Article  PubMed  CAS  Google Scholar 

  16. Carcagno AL, Marazita MC, Ogara MF, Ceruti JM, Sonzogni SV, Scassa ME, Giono LE, Canepa ET (2011) E2F1-Mediated Upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation. PLoS ONE 6(7):e21938

    Article  PubMed  CAS  Google Scholar 

  17. Varone CL, Giono LE, Ochoa A, Zakin MM, Canepa ET (1999) Transcriptional regulation of 5-aminolevulinate synthase by phenobarbital and cAMP-dependent protein kinase. Arch Biochem Biophys 372(2):261–270

    Article  PubMed  CAS  Google Scholar 

  18. Varone CL, Canepa ET (1997) Evidence that protein kinase C is involved in delta-aminolevulinate synthase expression in rat hepatocytes. Arch Biochem Biophys 341(2):259–266

    Article  PubMed  CAS  Google Scholar 

  19. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15(5):2672–2681

    PubMed  CAS  Google Scholar 

  20. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 94(14):7245–7250

    Article  PubMed  CAS  Google Scholar 

  21. Hitchens MR, Robbins PD (2003) The role of the transcription factor DP in apoptosis. Apoptosis 8(5):461–468

    Article  PubMed  CAS  Google Scholar 

  22. Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5(5):401–409

    Article  PubMed  CAS  Google Scholar 

  23. Wang B, Liu K, Lin FT, Lin WC (2004) A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem 279(52):54140–54152

    Article  PubMed  CAS  Google Scholar 

  24. Ceruti JM, Scassa ME, Marazita MC, Carcagno AC, Sirkin PF, Canepa ET (2009) Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response. Int J Biochem Cell Biol 41(6):1344–1353

    Article  PubMed  CAS  Google Scholar 

  25. Sherr CJ (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev 12(19):2984–2991

    Article  PubMed  CAS  Google Scholar 

  26. Iaquinta PJ, Aslanian A, Lees JA (2005) Regulation of the Arf/p53 tumor surveillance network by E2F. Cold Spring Harb Symp Quant Biol 70:309–316

    Article  PubMed  CAS  Google Scholar 

  27. Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6(9):663–673

    Article  PubMed  CAS  Google Scholar 

  28. Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26(9):1306–1316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANCYPT) and Universidad de Buenos Aires. ALC, MCM and DSC are recipient of fellowships and LEG, NP and ETC. are career investigators of the CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo T. Cánepa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carcagno, A.L., Giono, L.E., Marazita, M.C. et al. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation. Mol Cell Biochem 366, 123–129 (2012). https://doi.org/10.1007/s11010-012-1289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1289-8

Keywords

Navigation