Skip to main content
Log in

Myocardial infarction in mice alters sarcomeric function via post-translational protein modification

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Myocardial physiology in the aftermath of myocardial infarction (MI) before remodeling is an under-explored area of investigation. Here, we describe the effects of MI on the cardiac sarcomere with focus on the possible contributions of reactive oxygen species. We surgically induced MI in 6–7-month-old female CD1 mice by ligation of the left anterior descending coronary artery. Data were collected 3–4 days after MI or sham (SH) surgery. MI hearts demonstrated ventricular dilatation and systolic dysfunction upon echo cardiographic analysis. Sub-maximum Ca-activated tension in detergent-extracted fiber bundles from papillary muscles increased significantly in the preparations from MI hearts. Ca2+ sensitivity increased after MI, whereas cooperativity of activation decreased. To assess myosin enzymatic integrity we measured splitting of Ca-ATP in myofibrillar preparations, which demonstrated a decline in Ca-ATPase activity of myofilament myosin. Biochemical analysis demonstrated post-translational modification of sarcomeric proteins. Phosphorylation of cardiac troponin I and myosin light chain 2 was reduced after MI in papillary samples, as measured using a phospho-specific stain. Tropomyosin was oxidized after MI, forming disulfide products detectable by diagonal non-reducing–reducing SDS-PAGE. Our analysis of myocardial protein oxidation post-MI also demonstrated increased S-glutathionylation. We functionally linked protein oxidation with sarcomere function by treating skinned fibers with the sulfhydryl reducing agent dithiothreitol, which reduced Ca2+ sensitivity in MI, but not SH, samples. Our data indicate important structural and functional alterations to the cardiac sarcomere after MI, and the contribution of protein oxidation to this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rao VS, La Bonte LR, Xu Y, Yang Z, French BA, Guilford WH (2009) Alterations to myofibrillar protein function in nonischemic regions of the heart early after myocardial infarction. Am J Physiol Heart Circ Physiol 293:H654–H659

    Article  Google Scholar 

  2. Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66:12–21

    Article  PubMed  CAS  Google Scholar 

  3. Vahebi S, Ota A, Li M, Warren CM, de Tombe PP, Wang Y, Solaro RJ (2007) p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circ Res 100:408–415

    Article  PubMed  CAS  Google Scholar 

  4. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567

    Article  PubMed  CAS  Google Scholar 

  5. Jacques AM, Copeland O, Messer AE, Gallon CE, King K, McKenna WJ et al (2008) Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. J Mol Cell Cardiol 45:209–216

    Article  PubMed  CAS  Google Scholar 

  6. Biesiadecki BJ, Kobayashi T, Walker JS, Solaro RJ, de Tombe PP (2007) The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation. Circ Res 100:1486–1493

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi T, Dong WJ, Burkart EM, Cheung HC, Solaro RJ (2004) Effects of protein kinase C dependent phosphorylation and a familial hypertrophic cardiomyopathy-related mutation of cardiac troponin I on structural transition of troponin C and myofilament activation. Biochemistry 43:5996–6004

    Article  PubMed  CAS  Google Scholar 

  8. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31:1352–1356

    Article  PubMed  CAS  Google Scholar 

  9. Sun Y (2009) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81: 482–490

    Google Scholar 

  10. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  PubMed  CAS  Google Scholar 

  11. Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903

    Article  PubMed  CAS  Google Scholar 

  12. Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M et al (2004) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109:544–549

    Article  PubMed  CAS  Google Scholar 

  13. Jialal I, Devaraj S (2003) Antioxidants and atherosclerosis: don’t throw out the baby with the bath water. Circulation 107:926–928

    Article  PubMed  CAS  Google Scholar 

  14. Canton M, Neverova I, Menabo R, van Eyk J, di Lisa F (2004) Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 286:H870–H877

    Article  PubMed  CAS  Google Scholar 

  15. Prochniewicz E, Lowe DA, Spakowicz DJ, Higgins L, O’Connor K, Thompson LV et al (2008) Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers. Am J Physiol Cell Physiol 294:C613–C626

    Article  PubMed  CAS  Google Scholar 

  16. Sugden PH, Clark A (2006) Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 8:2111–2124

    Article  PubMed  CAS  Google Scholar 

  17. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    PubMed  CAS  Google Scholar 

  18. Shioura KM, Geenen DL, Goldspink PH (2007) Assessment of cardiac function with the pressure-volume conductance system following myocardial infarction in mice. Am J Physiol Heart Circ Physiol 293:H2870–H2877

    Article  PubMed  CAS  Google Scholar 

  19. Fabiato A (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Meth Enzymol 157:378–417

    Article  PubMed  CAS  Google Scholar 

  20. Pagani ED, SolaroRJ (1984) Methods for measuring functional properties of sarcoplasmic reticulum and myofibrils in small samples of myocardium. In: Schwartz A (ed) Methods in pharmacology, vol 5, Plenum Publishing Corp. New York, pp 44–61

  21. Passarelli C, Di Venere A, Piroddi N, Pastore A, Scellini B, Tesi C et al (2010) Susceptibility of isolated myofibrils to in vitro glutathionylation: potential relevance to muscle functions. Cytoskeleton 67:81–89

    PubMed  CAS  Google Scholar 

  22. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–9532

    Article  PubMed  CAS  Google Scholar 

  23. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  24. Solaro RJ, Westfall MV (2005) Physiology of the myocardium. In: Sellke FW, del Nido PJ, Swanson S (eds) Surgery of the chest. Elsevier Saunders, Philadelphia, pp 767–779

    Google Scholar 

  25. Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R (2008) Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal 10:445–473

    Article  PubMed  CAS  Google Scholar 

  26. Christopher B, Pizarro GO, Nicholson B, Yuen S, Hoit BD, Ogut O (2009) Reduced force production during low blood flow to the heart correlates with altered troponin I phosphorylation. J Muscle Res Cell Motil 30:111–123

    Article  PubMed  CAS  Google Scholar 

  27. van der Velden J, Merkus D, Klarenbeek BR, James AT, Boontje NM, Dekkers DH et al (2009) Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction. Circ Res 95:e85–e95

    Article  Google Scholar 

  28. Li P, Hofmann PA, Li B, Malhotra A, Cheng W, Sonnenblick EH et al (1997) Myocardial infarction alters myofilament calcium sensitivity and mechanical behavior of myocytes. Am J Physiol 272:H360–H370

    PubMed  CAS  Google Scholar 

  29. Belin RJ, Sumandea MP, Kobayashi T, Walker LA, Rundell VL, Urboniene D et al (2006) Left ventricular myofilament dysfunction in rat experimental hypertrophy and congestive heart failure. Am J Physiol Heart Circ Physiol 291:H2344–H2353

    Article  PubMed  CAS  Google Scholar 

  30. Hinken AC, Solaro RJ (2007) A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation. Physiology 22:73–80

    Article  PubMed  CAS  Google Scholar 

  31. Solaro RJ (2010) Sarcomere control mechanisms and the dynamics of the cardiac cycle. J Biomed Biotechnol. doi:10.1155/2010/105648

  32. Alpert NR, Gordon MS (1962) Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 202:940–946

    PubMed  CAS  Google Scholar 

  33. Barany M. (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50: 197–218

    Google Scholar 

  34. Walker LA, Walker JS, Ambler SK, Buttrick PM (2010) Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice. J Mol Cell Cardiol 48:1180–1186

    Article  PubMed  CAS  Google Scholar 

  35. Clement O, Puceat M, Walsh MP, Vassort G (1992) Protein kinase C enhances myosin light-chain kinase effects on force development and ATPase activity in rat single skinned cardiac cells. Biochem J 285:311–317

    PubMed  CAS  Google Scholar 

  36. Chen FC, Ogut O (2006) Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol Cell Physiol 290:C719–C727

    Article  PubMed  CAS  Google Scholar 

  37. Carpi A, Menabò R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M (2009) The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta 1787:774–780

    Article  PubMed  CAS  Google Scholar 

  38. Heusch P, Canton M, Aker S, van de Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di Lisa F, Heusch G, Schulz R (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160:1408–1416

    PubMed  CAS  Google Scholar 

  39. Evans CC, Pena JR, Phillips RM, Muthuchamy M, Wieczorek DF, Solaro RJ, Wolska BM (2000) Altered hemodynamics in transgenic mice harboring mutant tropomyosin linked to hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 279:H2414–H2423

    PubMed  CAS  Google Scholar 

  40. Chang AN, Harada K, Ackerman MJ, Potter JD (2005) Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin. J Biol Chem 280:34343–34349

    Article  PubMed  CAS  Google Scholar 

  41. Jagatheesan G, Rajan S, Schulz EM, Ahmed RP, Petrashevskaya N, Schwartz A et al (2009) An internal domain of beta-tropomyosin increases myofilament Ca(2+) sensitivity. Am J Physiol Heart Circ Physiol 297:H181–H190

    Article  PubMed  CAS  Google Scholar 

  42. Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 509:565–575

    Article  PubMed  CAS  Google Scholar 

  43. Ambler SK, Hodges YK, Jones GM, Long CS, Horwitz LD (2008) Prolonged administration of a dithiol antioxidant protects against ventricular remodeling due to ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295:H1303–H1310

    Article  PubMed  CAS  Google Scholar 

  44. ter Keurs HE, Shinozaki T, Zhang YM, Zhang ML, Wakayama Y, Sugai Y et al (2008) Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias. Prog Biophys Mol Biol 97:312–331

    Article  PubMed  CAS  Google Scholar 

  45. Baudenbacher F, Schober T, Pinto JR, Sidorov VY, Hilliard F, Solaro RJ et al (2008) Myofilament calcium sensitization causes susceptibility to cardiac arrhythmia. J Clin Invest 118:3893–3903

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marcelo Bonini for his helpful advice on assessing glutathionylation. This study was supported by American Heart Association-Midwest Pre-Doctoral Fellowship 2008-06682-00-00 (BSA) and by NIH Grants T32 007692 (BSA, KMS, SBS) and PO1 HL062426 (RJS, DLG, PHG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Solaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avner, B.S., Shioura, K.M., Scruggs, S.B. et al. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Mol Cell Biochem 363, 203–215 (2012). https://doi.org/10.1007/s11010-011-1172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1172-z

Keywords

Navigation