Skip to main content
Log in

Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been established that atherosclerotic coronary artery disease is more frequent and more severe in diabetic compared to non-diabetic subjects, but the reason for the excess risk of developing coronary macroangiopathy in diabetes remains incompletely characterized. Various biochemical mechanisms speculated to being at the “heart” of diabetic cardiac and coronary macroangiopathy are reviewed in the present article. In doing so, this article presents evidence that the labyrinthine interactions of hyperglycemia, insulin resistance, and dyslipidemia in diabetes result in a pro-atherogenic phenotype. Furthermore, the diabetic milieu yields a complex (dys)metabolic environment characterized by chronic inflammation, procoagulability, impaired fibrinolysis, neovascularization abnormalities, and microvascular defects that cumulatively alter blood rheology, artery structure, and homeostasis of the endothelium. The contributory influences of these factors in the pathophysiology of coronary artery disease in diabetes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bandyopadhyay P (2006) Cardiovascular disease and diabetes mellitus. Drug News Perspect 19(6):369–375

    PubMed  Google Scholar 

  2. Marchetti P, Copelli A, Gianarelli R (2007) Pathophysiological links between diabetes and heart disease. Medicographia 29(3):213–219

    Google Scholar 

  3. Kumar PJ, Clark M (2006) Diabetes mellitus and other disorders of metabolism. In: Kumar PJ, Clark M (eds) Textbook of medicine. Sanders, London, pp 1069–1122

    Google Scholar 

  4. Zimmet PZ, Alberti KG (2006) Globalisation and the non-communicable disease epidemic. Obesity (Silver Spring) 14(1):1–3. doi:10.1038/oby.2006.1

    Article  Google Scholar 

  5. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038. doi:10.1001/jama.241.19.2035

    Article  PubMed  CAS  Google Scholar 

  6. Grundy SM, Brewer B, Cleeman JI et al. (2004) Definition of the metabolic syndrome. Report of the national heart, lung, blood Institute/American heart Association conference on scientific issues related to definition. Circulation 109:433–438. doi:10.1161/01.CIR.0000111245.75752.C6

  7. Alberti KG, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062. doi:10.1016/S0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  8. Nigro J, Osman N, Dart MA et al (2006) Insulin resistance and atherosclerosis. Endocr Rev 27(3):242–259. doi:10.1210/er.2005-0007

    Article  PubMed  CAS  Google Scholar 

  9. Zimmet P, Defronzo R, Keen H (1997) International textbook of diabetes mellitus. Wiley, Chichester, pp 9–23

    Google Scholar 

  10. Horst D, Rau H, Walfish PJ et al (1997) CTLA4 alanine-17 confers genetic susceptibility to Graves’ disease and to type 1 diabetes mellitus. J Clin Endocr Metab 82(1):143–146. doi:10.1210/jc.82.1.143

    Article  Google Scholar 

  11. Marso SP, Stern DM (2003) Diabetes and cardiovascular disease: integrating science and clinical medicine. Lippincott Williams and Wilkins, Philadelphia, pp 56–74

    Google Scholar 

  12. Diabetes UK (2007) Diabetes heartache: the hard reality of cardiovascular care for people with diabetes. Available via http://www.diabetes.org.uk/Documents/News/Heartache_report07.pdf. Accessed 16 May 2008

  13. Diabetes UK (2004) Diabetes in the UK. Diabetes UK 2004, London. Available via http://www.diabetes.org.uk/Documents/pdf. Accessed 10 February 2008

  14. British Medical Association (2004) Diabetes Mellitus: An update for healthcare professionals. BMA 2004, London. Available via http://www.bma.org.uk/ap.nsf/Content/Diabetes. Accessed 5 Apr 2008

  15. Cameron J, Cruikshank JK (2007) Glucose, insulin, diabetes and mechanisms of arterial dysfunction. Clin Exp Pharmacol Physiol 34:677–682. doi:10.1111/j.1440-1681.2007.04659.x

    Article  PubMed  CAS  Google Scholar 

  16. Spinetti G, Kraenkel N, Emanueli C et al (2008) Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies. Cardiovasc Res 78(2):265–273. doi:10.1093/cvr/cvn039

    Article  PubMed  CAS  Google Scholar 

  17. Peter R, Evans MC (2008) Management of diabetes in cardiovascular patients. Heart 94:369–375. Available via http://heart.bmj.com/cgi/content/extract/94/3/369?maxtosresourcetyCIT. Accessed 31 May 2008

    Google Scholar 

  18. Goodfellow J (1997) Microvascular heart disease in diabetes mellitus. Diabetologia 40:S130–S133. doi:10.1007/s001250051428

    Article  PubMed  Google Scholar 

  19. Grossman E, Messerli FH (1996) Diabetic and hypertensive heart disease. Ann Intern Med 125(4):304–310

    PubMed  CAS  Google Scholar 

  20. Bracken NK, Qureshi MA, Singh J et al (2003) Mechanism underlying contractile dysfunction in streptozotocin induced type 1 and type diabetic cardiomyopathy. In: Dhalla NS et al (eds) Atherosclerosis, hypertension and diabetes. Kluwer Academic Publishers, Boston, pp 387–408

    Google Scholar 

  21. Celik T, Iyisoy A, Kardesogla E (2007) The clinical significance of microvascular impairment in patients with pure uncomplicated Diabetes mellitus. Int J Cardiol 33(4):1–2

    Google Scholar 

  22. Natali A, Vichi S, Landi P et al (2000) Coronary atherosclerosis in type II diabetes: angiographic findings and clinical outcome. Diabetologia 43(5):632–641. doi:10.1007/s001250051352

    Article  PubMed  CAS  Google Scholar 

  23. Vinik A, Flemmer M (2002) Diabetes and macrovascular disease. J Diabetes Complicat 16:235–245. doi:10.1016/S1056-8727(01)00212-4

    Article  PubMed  Google Scholar 

  24. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26:77–82. doi:10.2337/diaclin.26.2.77

    Article  Google Scholar 

  25. Goraya TY, Liebson CL, Palumbo PJ (2002) Coronary atherosclerosis in DM: a population based study. J Am Coll Cardiol 40:946–953. doi:10.1016/S0735-1097(02)02065-X

    Article  PubMed  Google Scholar 

  26. Dortimer A, Shenoy P, Shiroff R (1978) Diffuse coronary disease in diabetics: fact or fiction? Circulation 57:133–136

    PubMed  CAS  Google Scholar 

  27. Butler R (1998) The clinical implications of diabetic heart disease. Eur Heart J 19:1617–1627. doi:10.1053/euhj.1998.1284

    Article  PubMed  CAS  Google Scholar 

  28. Berry C, Tardif JC, Bourassa MG (2007) Coronary heart disease in patients with diabetes—Part I: recent advances in prevention and noninvasive management. Am Coll Cardiol 49(6):631–642. doi:10.1016/j.jacc.2006.09.046

    Article  CAS  Google Scholar 

  29. World Heart Federation Fact Sheet (2002) Available via http://www.world-heart-federation.org/cardiovascular-health/cardiovascular-disease-risk-factors/diabetes/. Accessed 3 May 2008

  30. Grundy SM, Balady GJ, Criqui MH (1998) Primary prevention of CHD: guidance from Framingham. Circulation 97:1876–1887

    PubMed  CAS  Google Scholar 

  31. Lee ET, Howard BV, Wang W et al. (2007) Prediction of CAD in patients with diabetes and albuminuria. Cardiol Rev Available at http://www.cardiologyreviewonline.com/issues/2007-12.asp. Accessed 18 Feb 2008

  32. Mowla A, Dastgheib SA, Chodedri A (2007) Chronic renal failure and diabetes mellitus: are they comparable risk factors of coronary artery disease? South Med J 100:1

    Google Scholar 

  33. Mazeika P, Prasad N, Bui S et al (2003) Predictors of angiographic restenosis after coronary intervention in patients with diabetes mellitus. Am Heart J 145(6):1013–1021. doi:10.1016/S0002-8703(03)00085-1

    Article  PubMed  Google Scholar 

  34. Haffner SM, Agostino RD Jr, Saad MF et al (2000) Carotid artery atherosclerosis in type-2 diabetic and nondiabetic subjects with and without symptomatic coronary artery disease (The Insulin Resistance Atherosclerosis Study). Am J Cardiol 85(12):1395–1400. doi:10.1016/S0002-9149(00)00784-0

    Article  PubMed  CAS  Google Scholar 

  35. Sprafka JM, Burke GL, Folsom AR et al (1991) Trends in prevalence of diabetes mellitus in patients with myocardial infarction and effect of diabetes on survival: the Minnesota heart survey. Diabetes Care 14(7):537–543. doi:10.2337/diacare.14.7.537

    Article  PubMed  CAS  Google Scholar 

  36. Hong S, Kim MH, Ahn TH et al (2006) Multiple predictors of coronary restenosis after drug-eluting stent implantation in patients with diabetes. Heart 92:1119–1124. doi:10.1136/hrt.2005.075960

    Article  PubMed  CAS  Google Scholar 

  37. Rutter MK, Marshall SM, Mccomb JM (1997) Coronary artery disease and diabetes. Heart 78:527–529

    PubMed  CAS  Google Scholar 

  38. Buyken AE, Von Eckardstein A, Schulte AB et al (2007) Type 2 diabetes mellitus and risk of coronary heart disease: results of the 10-year follow-up of the PROCAM study. Eur J Cardiovasc Prev Rehabil 14(2):230–236. doi:10.1097/HJR.0b013e3280142037

    Article  PubMed  Google Scholar 

  39. He Z, Rask-Madsen M, King GL (2003) Managing heart disease: mechanisms of cardiovascular complications in diabetes and potential new pharmacological therapies. Eur Heart J Suppl 5(B):B51–B57

    Article  CAS  Google Scholar 

  40. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605. doi:10.1161/01.RES.0000207406.94146.c2

    Article  PubMed  CAS  Google Scholar 

  41. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (1999) Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Diabetes 48(2):383–390. doi:10.2337/diabetes.48.2.383

    Google Scholar 

  42. Aronson D, Rayfield EJ (2002) How hyperglycaemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 1:1. doi:10.1186/1475-2840-1-1

    Article  PubMed  Google Scholar 

  43. Beckman JA, Creager M, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570–2581. doi:10.1001/jama.287.19.2570

    Article  PubMed  CAS  Google Scholar 

  44. Gleissner CA, Galkina E, Nadler JL et al. (2008) Mechanisms by which diabetes increases cardiovascular risk. Drug Discov Today. Available via http://www.sciencedirect.com/science?_ob=ArticleURL. Accessed 21 March 2008

  45. Wold LE, Ceylan-isik AF, Ren J (2005) Oxidative stress and stress signalling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin 26(8):908–917. doi:10.1111/j.1745-7254.2005.00146.x

    Article  PubMed  CAS  Google Scholar 

  46. Ramasamy R, Oates P, Schaefer S (1997) Aldose reductase inhibition protects diabetic and non diabetic rat hearts from ischaemic injury. Diabetes 46:292–300. doi:10.2337/diabetes.46.2.292

    Article  PubMed  CAS  Google Scholar 

  47. Du XL, Edelstein D, Rossetti L, Fantus IG et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226. doi:10.1073/pnas.97.22.12222

    Article  PubMed  CAS  Google Scholar 

  48. Du XL, Edelstein D, Dimmeler S et al (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig 108(9):1341–1348

    PubMed  CAS  Google Scholar 

  49. Nesto RW (2004) Correlation between cardiovascular disease and diabetes mellitus: current concepts. Am J Med 116(5)1:11–22

    Google Scholar 

  50. Farhangkhoee H, Khan ZA, Kaur H et al (2006) Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 111(2):384–399

    Article  PubMed  CAS  Google Scholar 

  51. Asbun J, Villareal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700. doi:10.1016/j.jacc.2005.09.050

    Article  PubMed  CAS  Google Scholar 

  52. Brownlee M, Cerami A, Vlassara HA (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    PubMed  CAS  Google Scholar 

  53. Farmer JA (2008) Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr Diabetes Rep 8:71–77. doi:10.1007/s11892-008-0013-2

    Article  Google Scholar 

  54. Ramasamy R, Yan SF, Schmidt AM (2007) The RAGE connection to diabetes and atherosclerosis: an intertwined web of advanced glycation and inflammation. Future Lipidol 2(2):239–250. doi:10.2217/17460875.2.2.239

    Article  CAS  Google Scholar 

  55. Park L, Raman KG, Lee KJ et al (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end products. Nat Med 4:1025–1031. doi:10.1038/2012

    Article  PubMed  CAS  Google Scholar 

  56. Figarolla JL (2007) Anti-inflammatory effects of AGE inhibitor LR-90 in human monocytes. Diabetes 56:647–655. doi:10.2337/db06-0936

    Article  CAS  Google Scholar 

  57. Malhotra A, Singh Kang BP, Opawumi D et al (2001) Molecular biology of protein kinase C signalling in cardiac myocytes. Mol Cell Biochem 225(1–2):97–107. doi:10.1023/A:1012261903611

    Article  PubMed  CAS  Google Scholar 

  58. Guo M, Wu MH, Korompai F et al (2003) Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics 12:139–146

    PubMed  CAS  Google Scholar 

  59. Rask-Madsen C, King GL (2005) Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol 25:487. doi:10.1161/01.ATV.0000155325.41507.e0

    Article  PubMed  CAS  Google Scholar 

  60. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866. doi:10.2337/diabetes.47.6.859

    Article  PubMed  CAS  Google Scholar 

  61. Evcimen ND, King GL (2007) The role of protein kinase C activation and the vascular complications of diabetes. Pharm Res 55(6):498–510. doi:10.1016/j.phrs.2007.04.016

    Article  CAS  Google Scholar 

  62. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625 Available via http://www.medscape.com/viewarticle/505648 [Accessed 28 Febraury 2008]

    Google Scholar 

  63. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi:10.1038/414813a

    Article  PubMed  CAS  Google Scholar 

  64. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9. doi:10.2337/diabetes.48.1.1

    Article  PubMed  CAS  Google Scholar 

  65. Farahmand F, Lou H, Singal PK (2003) Oxidative stress in cardiovascular complications of diabetes. In: Pierce GN, Nagano M, Zahradka P, Dhalla NS (eds) Atherosclerosis, hypertension and diabetes. Kluwer Academic Publishers, Boston, pp 387–408

    Google Scholar 

  66. Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5. doi:10.1186/1475-2840-4-5

    Article  PubMed  CAS  Google Scholar 

  67. Griendling KK, Fitzgerald GA (2003) Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 108(16):1912–1916. doi:10.1161/01.CIR.0000093660.86242.BB

    Article  PubMed  Google Scholar 

  68. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43(3):652–671. doi:10.1016/S0008-6363(99)00169-8

    Article  Google Scholar 

  69. Vega-Lopez S, Devaraj S, Jialal I (2004) Oxidative stress and antioxidant supplementation in the management of diabetic cardiovascular disease. J Investig Med 52(1):24–32. doi:10.2310/6650.2004.11932

    Article  PubMed  CAS  Google Scholar 

  70. Nourouz-Zadeh J, Tajaddini-Sarmadi J (1995) Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44:1054–1058. doi:10.2337/diabetes.44.9.1054

    Article  Google Scholar 

  71. Kaul N, Siveski-Iliskovic N, Hill M et al (1996) Probucol treatment reverses antioxidant and functional deficit in diabetic cardiomyopathy. Mol Cell Biochem 160:283–288. doi:10.1007/BF00240060

    Article  PubMed  Google Scholar 

  72. Yu DK, McLennan S, Fisher E et al (1989) Ascorbic acid metabolism and polyol pathway in diabetes. Diabetes 38:257–261. doi:10.2337/diabetes.38.2.257

    Article  Google Scholar 

  73. Arai K, Magichi S, Fuji S et al (1987) Glycation and inactivation of human Cu–Zn-superoxide dismutase. J Biol Chem 262:16969–16972

    PubMed  CAS  Google Scholar 

  74. Moreno PR, Fuster V (2004) New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 44(12):2293–2300. doi:10.1016/j.jacc.2004.07.060

    Article  PubMed  CAS  Google Scholar 

  75. Goldfine AB, Beckman JA (2008) Life and death in Denmark: lessons about diabetes and coronary heart disease. Circulation 117:1914–1917. doi:10.1161/CIRCULATIONAHA.108.767681

    Article  PubMed  Google Scholar 

  76. Schalkwijk CG, Stehouwer DA (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109:143–159. doi:10.1042/CS20050025

    Article  PubMed  CAS  Google Scholar 

  77. Cefalu WT (2001) Insulin resistance: cellular and clinical concepts. Exp Biol Med 226:13–26

    CAS  Google Scholar 

  78. Bajaj M, DeFronzo RA (2003) Metabolic and molecular basis of insulin resistance. J Nucl Cardiol 10:311–323. doi:10.1016/S1071-3581(03)00520-8

    Article  PubMed  Google Scholar 

  79. Hsueh W, Law RE (1999) Insulin signaling in the arterial wall. Am J Cardiol 84:21J–24J. doi:10.1016/S0002-9149(99)00353-7

    Article  PubMed  CAS  Google Scholar 

  80. Pyörälä M, Miettinen H, Laakso M et al (1998) Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen study. Circulation 98:398–404

    PubMed  Google Scholar 

  81. Baron AD (1994) Hemodynamic actions of insulin. Am J Physiol 367:E187–E202

    Google Scholar 

  82. Stout RW (1971) The effect of insulin on the incorporation of (1-C) sodium acetate into the lipids of the rat aorta. Diabetologia 7:367–372. doi:10.1007/BF01219472

    Article  PubMed  CAS  Google Scholar 

  83. Defronzo R (2006) Is insulin resistance atherogenic? Atherosclerosis supp 11(4):11–15

    Article  CAS  Google Scholar 

  84. Haffner SM, Miettinen H (1997) Insulin resistance implications for T2DM and CHD. Am J Med 103(2):152–162. doi:10.1016/S0002-9343(97)00027-2

    Article  PubMed  CAS  Google Scholar 

  85. Haffner SM (1993) Editorial: insulin and blood pressure: fact or fantasy? J Clin Endocrinol Metab 76:541–543. doi:10.1210/jc.76.3.541

    Article  PubMed  CAS  Google Scholar 

  86. Semenkovich C (2006) Insulin resistance and atherosclerosis. J Clin Investig 116(7):1813–1822. doi:10.1172/JCI29024

    Article  PubMed  CAS  Google Scholar 

  87. Hofmann S, Brownlee M (2004) Biochemistry and molecular cell biology of diabetic complications: a unifying mechanism. In: LeRoith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text, 3rd edn. Williams & Wilkins, Philadelphia, Lippincott, pp 1441–1457

    Google Scholar 

  88. Hurst RT, Lee RW (2003) Increased incidence of coronary atherosclerosis in type 2 diabetes mellitus: mechanisms and management. Ann Intern Med 139:824–834

    PubMed  Google Scholar 

  89. Reusch J, Draznin BB (2006) Atherosclerosis in diabetes and insulin resistance. Diabetes Obes Metab 9:455–463. doi:10.1111/j.1463-1326.2006.00620.x

    Article  CAS  Google Scholar 

  90. Austin MA, Breslow JL, Hennekens CH et al (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921. doi:10.1001/jama.260.13.1917

    Article  PubMed  CAS  Google Scholar 

  91. Superko HR (2000) Small, dense, low-density lipoprotein and atherosclerosis. Curr Atheroscler Rep 2:226–231. doi:10.1007/s11883-000-0024-1

    Article  PubMed  CAS  Google Scholar 

  92. Plutzky J, Viberti G, Haffner S (2002) Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complicat 16(6):401–415. doi:10.1016/S1056-8727(02)00202-7

    Article  PubMed  Google Scholar 

  93. Lambarzi N, Renard CB, Kramer F et al (2004) Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages n atherosclerotic lesions: potential role of glucose-oxidised LDL. Diabetes 53:3217–3225. doi:10.2337/diabetes.53.12.3217

    Article  Google Scholar 

  94. Renard CB, Kramer F, Johanson F et al (2004) Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of advanced lesions. J Clin Investig 114:659–668

    PubMed  CAS  Google Scholar 

  95. Tousoulis D, Charakida M, Stefanadis C (2006) Endothelial function and inflammation in CAD. Heart 92:441–444

    PubMed  CAS  Google Scholar 

  96. Hayden MR, Tyagi SC (2004) Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol 3:1. doi:10.1186/1475-2840-3-1

    Article  PubMed  Google Scholar 

  97. Willerson JT, Majesly M (2001) Russell Ross, Ph.D: visionary basic scientist in cardiovascular medicine. In memoriam. Circulation 103(4):478–479

  98. Witztum JL (1994) The oxidation hypothesis of atherosclerosis. Lancet 344(8925):793–795. doi:10.1016/S0140-6736(94)92346-9

    Article  PubMed  CAS  Google Scholar 

  99. Muir R (1992) Cardiovascular system. In: MacSween RNM, Whaley K (eds) Muir’s textbook of pathology, Chap. 12, 13th edn. Hodder and Stoughton Ltd, London

    Google Scholar 

  100. Maton A, Hopkins J, McLaughlin CW et al (1993) Human biology and health. Prentice Hall, Englewood Cliffs, NJ, USA, pp 134–173

    Google Scholar 

  101. Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    PubMed  CAS  Google Scholar 

  102. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. doi:10.1152/physrev.00024.2005

    Article  PubMed  CAS  Google Scholar 

  103. Zaman AG, Helft G, Worthley SG et al (2000) The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149:251–266. doi:10.1016/S0021-9150(99)00479-7

    Article  PubMed  CAS  Google Scholar 

  104. Moreno PR, Murcia AM, Palacios I et al (2000) Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 102:2180–2184

    PubMed  CAS  Google Scholar 

  105. Biondi-Zoccai GL, Abbate A (2002) Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol 41:1071–1077. doi:10.1016/S0735-1097(03)00088-3

    Article  CAS  Google Scholar 

  106. McGill HC Jr, McMahan CA, Malcom GT, Oalmann MC, Strong JP (1995) Relation of glycohemoglobin and adiposity to atherosclerosis in youth: pathological determinants of atherosclerosis in youth (PDAY) research group. Arterioscler Thromb Vasc Biol 15:431–440

    PubMed  Google Scholar 

  107. Dabelea D, Kinney G, Snell-Bergeon JK et al (2003) Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The coronary artery calcification in type 1 diabetes (CACTI) study. Diabetes 52:833–839. doi:10.2337/diabetes.52.11.2833

    Article  Google Scholar 

  108. Orchard TJ, Costacon T, Kretowski A et al (2006) Type 1 diabetes and coronary artery disease. Diabetes Care 29:2528–2538. doi:10.2337/dc06-1161

    Article  PubMed  Google Scholar 

  109. Gerrity RG, Natarajan R, Nadler JL et al (2001) Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50:1654–1665. doi:10.2337/diabetes.50.7.1654

    Article  PubMed  CAS  Google Scholar 

  110. Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev 22(1):36–52. doi:10.1210/er.22.1.36

    Article  PubMed  CAS  Google Scholar 

  111. Esper RJ, Nordaby RA, Vilarino JO et al (2006) Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol 5:4. doi:10.1186/1475-2840-5-4

    Article  PubMed  CAS  Google Scholar 

  112. Loscalzo J, Welch G (1995) Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 38:87–104. doi:10.1016/S0033-0620(05)80001-5

    Article  PubMed  CAS  Google Scholar 

  113. Feldman CL, Stone PH (2000) Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr Opin Cardiol 15:430–440. doi:10.1097/00001573-200011000-00010

    Article  PubMed  CAS  Google Scholar 

  114. Stehouwer CD, Lambert J, Donker AJM (1997) Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res 34(1):55–68. doi:10.1016/S0008-6363(96)00272-6

    Article  PubMed  CAS  Google Scholar 

  115. Förstermann U, Closs EI, Pollock JS et al (1994) Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    PubMed  Google Scholar 

  116. Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714. doi:10.1161/CIRCULATIONAHA.105.602532

    Article  PubMed  CAS  Google Scholar 

  117. Rahman S, Rahman T, Ismail A et al (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9(6):767–780. doi:10.1111/j.1463-1326.2006.00655.x

    Article  PubMed  CAS  Google Scholar 

  118. Nitenberg A, Valensi P, Sachs R et al (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42(7):66–72. doi:10.2337/diabetes.42.7.1017

    Article  Google Scholar 

  119. Mehta JL, Rasouli N, Sinha AK (2006) Oxidative stress in diabetes: A mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem 38(5–6):794–803. doi:10.1016/j.biocel.2005.12.008

    CAS  Google Scholar 

  120. Shinozaki K, Kashiwagi A, Nishio K et al (1999) Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2- imbalance in insulin-resistant rat aorta. Diabetes 48:2437–2445. doi:10.2337/diabetes.48.12.2437

    Article  PubMed  CAS  Google Scholar 

  121. Creager MA, Luscher TF (2003) Diabetes and vascular disease: pathophysiology, clinical consequences and medical therapy-part 1. Circulation 108:1527–1532. doi:10.1161/01.CIR.0000091257.27563.32

    Article  PubMed  Google Scholar 

  122. Kinlay S, Behrendt D, Wainstein M et al (2001) The role of endothelin-1 in the constriction of human atherosclerotic coronary arteries. Circulation 104:1114–1118. doi:10.1161/hc3501.095707

    Article  PubMed  CAS  Google Scholar 

  123. Chakravarthy RG, Hayes AW, Stitt E et al (1998) Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes 47(6):945–952. doi:10.2337/diabetes.47.6.945

    Article  PubMed  CAS  Google Scholar 

  124. Tesfamariam B, Brown ML, Deykin D et al (1990) Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Investig 85:929–932. doi:10.1172/JCI114521

    Article  PubMed  CAS  Google Scholar 

  125. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    PubMed  CAS  Google Scholar 

  126. Savoia C, Schiffrin EL (2007) Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci 112:375–384. doi:10.1042/CS20060247

    Article  PubMed  CAS  Google Scholar 

  127. Fisman EZ, Motro M, Tenenbaum A (2003) The core of a novel interleukins classification: the bad, the good and the aloof. Cardiovasc Diabetol 2:11. doi:10.1186/1475-2840-2-11

    Article  PubMed  Google Scholar 

  128. Biondi-Zoccai G, Abbate A, Liuzzo G et al (2003) Atherothrombosis, inflammation and diabetes. J Am Coll Cardiol 41:1071–1077. doi:10.1016/S0735-1097(03)00088-3

    Article  PubMed  CAS  Google Scholar 

  129. Alexandraki K, Piperi C, Kalofoutis C et al (2006) Inflammatory process in type 2 diabetes: the role of cytokines. Ann NY Acad Sci 1084:89–117. doi:10.1196/annals.1372.039

    Article  PubMed  CAS  Google Scholar 

  130. Sánchez PL, Moriñigo JL, Pabón P et al (2004) Prognostic relations between inflammatory markers and mortality in diabetic patients with non-ST elevation acute coronary syndrome. Heart 90:264–269. doi:10.1136/hrt.2002.007443

    Article  PubMed  Google Scholar 

  131. Hamuro M, Polan J, Natarajan M et al (2002) High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis 2:277–287. doi:10.1016/S0021-9150(01)00719-5

    Article  Google Scholar 

  132. Collins T, Cybulsky MI (2001) NF-κB: pivotal mediator or innocent bystander in atherogenesis? J Clin Investig 107(3):255–264. doi:10.1172/JCI10373

    Article  PubMed  CAS  Google Scholar 

  133. Brand K, Page S, Rogler G et al (1996) Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Investig 97:1715–1722. doi:10.1172/JCI118598

    Article  PubMed  CAS  Google Scholar 

  134. Fischer CP, Perstrup LB, Berntsen A et al (2005) Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol 117:152–160. doi:10.1016/j.clim.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  135. Sjoholm D, Nostrom T (2005) Endothelial inflammation in insulin resistance. Lancet 365(9459):610–612

    PubMed  Google Scholar 

  136. Lin L, Qi Z, Li-jin P et al (2007) Elevation of tumor necrosis factor-α, interleukin-1β and interleukin-6 levels in aortic intima of Chinese Guizhou minipigs with streptozotocin-induced diabetes. Chin Med J 120(6):479–484

    Google Scholar 

  137. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519. doi:10.1038/nri1882

    Article  PubMed  CAS  Google Scholar 

  138. Schultz K, Rusmussen LM, Ledet T (2005) Expression levels and functional aspects of the hyaluron receptor CD44. Effects of insulin, glucose, IGF-1 or growth hormone on human arterial smooth muscle cells. Metabolism 54:287–295. doi:10.1016/j.metabol.2004.09.007

    Article  PubMed  CAS  Google Scholar 

  139. Shah PK (2000) Plaque disruption and thrombosis: potential role of inflammation and infection. Cardiol Rev 8:31–39. doi:10.1097/00045415-200008010-00007

    Article  PubMed  CAS  Google Scholar 

  140. Marfella R, Amico MD, DiFilippo C et al (2007) The possible role of the ubiquitin proteasome system in the development of atherosclerosis in diabetes. Cardiovasc Diabetol 6:35. doi:10.1186/1475-2840-6-35

    Article  PubMed  CAS  Google Scholar 

  141. Weyrich AS (2004) Platelets: signaling cells inside the immune continuum. Trends Immunol 25:489–495. doi:10.1016/j.it.2004.07.003

    Article  PubMed  CAS  Google Scholar 

  142. Winocour DW, Perry RL, Kinlough-Rathbone F (1992) Hypersensitivity to ADP of platelets from diabetic rats associated with enhanced fibrinogen binding. Eur J Clin Investig 22(1):19–23. doi:10.1111/j.1365-2362.1992.tb01930.x

    Article  CAS  Google Scholar 

  143. Li Y, Woo V, Bose R (2001) Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 280:H1480–H1489

    PubMed  CAS  Google Scholar 

  144. Vinik AL, Erbas T, Sun Park T (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24:1476–1485. doi:10.2337/diacare.24.8.1476

    Article  PubMed  CAS  Google Scholar 

  145. Carr ME (2001) Diabetes mellitus: a hypercoagulable state. J Diabetes Complic 15:44–45. doi:10.1016/S1056-8727(00)00132-X

    Article  CAS  Google Scholar 

  146. Morale M, De Negri F, Carmassi F (1997) Fibrin(ogen) and DM: don’t forget fibrinolysis. Diabetologia 40:735–737. doi:10.1007/s001250050742

    Article  PubMed  CAS  Google Scholar 

  147. Sambola A, Fuster V, Badimon JJ (2003) Role of coronary risk factors in blood thrombogenicity and acute coronary syndromes. Circulation 107:973–977. doi:10.1161/01.CIR.0000050621.67499.7D

    Article  PubMed  CAS  Google Scholar 

  148. Felmeden DC, Blann AD, Lip GY (2003) Angiogenesis: basic pathophysiology and implications for heart disease. Eur Heart J 24(7):586–603. doi:10.1016/S0195-668X(02)00635-8

    Article  PubMed  CAS  Google Scholar 

  149. Fam NP, Verma S, Kutryk M (2003) Clinician guide to angiogenesis. Circulation 108:2613. doi:10.1161/01.CIR.0000102939.04279.75

    Article  PubMed  Google Scholar 

  150. Simons M (2005) Angiogenesis, arteriogenesis, and diabetes. J Am Coll Cardiol 46:835–837. doi:10.1016/j.jacc.2005.06.008

    Article  PubMed  Google Scholar 

  151. Purushothaman KR, Fuster V, O’Connor W et al (2003) Neovascularization, inflammation and intra-plaque hemorrhage are increased in advanced human atherosclerosis from patients with diabetes mellitus. Circulation 108:459–469

    Google Scholar 

  152. Fadini GP, Agostini C, Avogaro A (2005) Endothelial progenitor cells and vascular biology in DM: current knowledge and future perspectives. Curr Diabetes Rep 1:41–58. doi:10.2174/1573399052952640

    Article  CAS  Google Scholar 

  153. Sasso FC, Torella D, Carbonara O (2005) Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J Am Coll Cardiol 46:827–834. doi:10.1016/j.jacc.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  154. Aronson D, Rayfield EJ, Chesebro JH (1997) Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med 126:296–306

    PubMed  CAS  Google Scholar 

  155. Abaci A, Oguzhan A, Kahraman S et al (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99:2239–2242

    PubMed  CAS  Google Scholar 

  156. Waltenberger J (2001) Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 49:554–560. doi:10.1016/S0008-6363(00)00228-5

    Article  PubMed  CAS  Google Scholar 

  157. Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus. A potential predictor for the individual capacity to develop collaterals. Circulation 102:185–190

    PubMed  CAS  Google Scholar 

  158. Arras M, Ito WD, Scholz D et al (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Investig 101:40–50. doi:10.1172/JCI119877

    Article  PubMed  CAS  Google Scholar 

  159. Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    PubMed  CAS  Google Scholar 

  160. Feener EP, King GL (1997) Vascular dysfunction in diabetes mellitus. Lancet 350:9–13. doi:10.1016/S0140-6736(97)90022-2

    Article  Google Scholar 

  161. Aiello LP, Wong JS (2000) Role of VEGF in diabetic vascular complications. Kidney Int Suppl 77:S113–S119. doi:10.1046/j.1523-1755.2000.07718.x

    Article  PubMed  CAS  Google Scholar 

  162. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: isolation and characterisation. Trends Cardiovasc Med 13(5):201–206. doi:10.1016/S1050-1738(03)00077-X

    Article  PubMed  CAS  Google Scholar 

  163. L’Abbate A (2005) Large and micro coronary vascular involvement in diabetes. Pharmacol Rep 57:3–9

    PubMed  Google Scholar 

  164. Nesto RW, Zarich S (1998) Acute myocardial infarction in diabetes mellitus: lessons learned from ACE inhibition. Circulation 97:12–15

    PubMed  CAS  Google Scholar 

  165. Fang YH, Johannes BP, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567. doi:10.1210/er.2003-0012

    Article  PubMed  CAS  Google Scholar 

  166. Harrower AD, Small DR, Railton R (1986) Variability of left ventricular function at diagnosis and after treatment in insulin-dependent diabetes. Diabetes Res 3:149–152

    PubMed  CAS  Google Scholar 

  167. Krentz AJ, Clough G, Byrne CD (2007) Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes Metab 9(6):781–791. doi:10.1111/j.1463-1326.2007.00670.x

    Article  PubMed  CAS  Google Scholar 

  168. Avogaro A, Fadini G, De Kreutzenberg SV et al (2007) Coronary heart disease in diabetes. Int Congr Ser 1303:70–73. doi:10.1016/j.ics.2007.04.006

    Article  Google Scholar 

  169. Scognamiglio R, Negut C, De Kreutzenberg SV et al (2005) Postprandial myocardial perfusion in healthy subjects and type 2 diabetic patients. Circulation 112(2):179–184. doi:10.1161/CIRCULATIONAHA.104.495127

    Article  PubMed  Google Scholar 

  170. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840. doi:10.1056/NEJMra061889

    Article  PubMed  CAS  Google Scholar 

  171. Barrett-Connor E (2004) Cardiovascular risk stratification and cardiovascular risk factors associated with erectile dysfunction: assessing cardiovascular risk in men with erectile dysfunction. Clin Cardiol 27(1):I8–I13

    Article  PubMed  Google Scholar 

  172. Molitch ME, DeFronzo RA, Franz MJ et al (2004) Nephropathy in diabetes. Diabetes Care 27(1):S79–S83. doi:10.2337/diacare.27.2007.S79

    Article  PubMed  Google Scholar 

  173. Wong TY, Klien R, Couper DJ et al (2001) Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet 358:1134–1140. doi:10.1016/S0140-6736(01)06253-5

    Article  PubMed  CAS  Google Scholar 

  174. Lockhart CJ, Hamilton PK, McVeigh K et al (2008) A cardiologist view of vascular disease in diabetes. Diabetes Obes Metab 10(4):279–292. doi:10.1111/j.1463-1326.2007.00727.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaipaul Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Souza, A., Hussain, M., Howarth, F.C. et al. Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart. Mol Cell Biochem 331, 89–116 (2009). https://doi.org/10.1007/s11010-009-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0148-8

Keywords

Navigation