Skip to main content
Log in

RETRACTED ARTICLE: Alternol inhibits proliferation and induces apoptosis in mouse lymphocyte leukemia (L1210) cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 23 November 2023

This article has been updated

Abstract

Alternol is a novel compound purified from the fermenting products by microorganisms named as Alternaria alternata var. monosporus from the bark of Yew. In this study, we tested its effect on mouse lymphocyte leukemia L1210 cells. Alternol was found to inhibit the proliferation and induce apoptosis in L1210 cells. When the cells were treated with Alternol, chromatin condensation and phosphatidylserine externalization were observed with the down-regulation of the pro-survival gene Bcl-2 and the activation of caspase-3, caspase-9, but not caspase-8. Moreover, exposure of cells to Alternol resulted in a significant increase in reactive oxygen species (ROS) and mitochondrial transmembrane potential (ΔΨm) depolarization. Taken together, these results demonstrate that Alternol is a potent agent in inducing L1210 cells to apoptosis, which involve caspase activation and ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Schmidt-Wolf GD, Schmidt-Wolf IG (2003) Gene therapy for hematological malignancies. Clin Exp Med 3:4–14

    Article  CAS  PubMed  Google Scholar 

  2. Whiteside TL, Gooding W (2003) Immune monitoring of human gene therapy trials: potential application to leukemia and lymphoma. Blood Cells Mol Dis 31:63–71

    Article  CAS  PubMed  Google Scholar 

  3. Zhang B, Wu KF, Lin YM, Ma XT, Rao Q, Zheng GG, Cao ZY, Li G, Song YH (2004) Gene transfer of pro-IL-18 and IL-1beta converting enzyme cDNA induces potent antitumor effects in L1210 cells. Leukemia 18:817–825

    Article  PubMed  Google Scholar 

  4. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    Article  CAS  PubMed  Google Scholar 

  5. Chakrabarty AM (2003) Microorganisms and cancer: quest for a therapy. J Bacteriol 185:2683–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhosle SM, Huilgol NG, Mishra KP (2005) Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin Chim Acta 359:89–100

    Article  CAS  PubMed  Google Scholar 

  7. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–45

    Article  CAS  PubMed  Google Scholar 

  8. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  9. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–56

    Article  CAS  PubMed  Google Scholar 

  10. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  11. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  12. Smets LA (1994) Programmed cell death (apoptosis) and response to anti-cancer drugs. Anticancer Drugs 5:3–9

    Article  CAS  PubMed  Google Scholar 

  13. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827

    Article  CAS  PubMed  Google Scholar 

  14. Amstad PA, Liu H, Ichimiya M, Berezesky IK, Trump BF, Buhimschi IA, Gutierrez PL (2001) BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep 6:351–362

    Article  CAS  PubMed  Google Scholar 

  15. Dinkova-Kostova AT, Cory AH, Bozak RE, Hicks RJ, Cory JG (2007) Bis(2-hydroxybenzylidene)acetone, a potent inducer of the phase 2 response, causes apoptosis in mouse leukemia cells through a p53-independent, caspase-mediated pathway. Cancer Lett 245:341–349

    Article  CAS  PubMed  Google Scholar 

  16. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  17. Stewart ZA, Pietenpol JA (2001) p53 signaling and cell cycle checkpoints. Chem Res Toxicol 14:243–263

    Article  CAS  PubMed  Google Scholar 

  18. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  19. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  CAS  PubMed  Google Scholar 

  20. Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157

    Article  CAS  PubMed  Google Scholar 

  21. Hou Q, Cymbalyuk E, Hsu SC, Xu M, Hsu YT (2003) Apoptosis modulatory activities of transiently expressed Bcl-2: roles in cytochrome C release and Bax regulation. Apoptosis 8:617–629

    Article  CAS  PubMed  Google Scholar 

  22. Deng G, Su JH, Ivins KJ, Van Houten B, Cotman CW (1999) Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp Neurol 159:309–318

    Article  CAS  PubMed  Google Scholar 

  23. Chen M, Wang J (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 7:313–319

    Article  CAS  PubMed  Google Scholar 

  24. Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M (2004) Involvement of increased stability of mitochondrial membrane potential and overexpression of Bcl-2 in enhanced anoxic tolerance induced by hypoxic preconditioning in cultured hypothalamic neurons. Brain Res 999:149–154

    Article  CAS  PubMed  Google Scholar 

  25. Farrow SN, Brown R (1996) New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 6:45–49

    Article  CAS  PubMed  Google Scholar 

  26. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326( Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042

    Article  PubMed  Google Scholar 

  28. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  PubMed  Google Scholar 

  29. Pandey S, Smith B, Walker PR, Sikorska M (2000) Caspase-dependent and independent cell death in rat hepatoma 5123tc cells. Apoptosis 5:265–275

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  CAS  PubMed  Google Scholar 

  31. Shih CM, Wu JS, Ko WC, Wang LF, Wei YH, Liang HF, Chen YC, Chen CT (2003) Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J Cell Biochem 89:335–347

    Article  CAS  PubMed  Google Scholar 

  32. Crompton M, Virji S, Doyle V, Johnson N, Ward JM (1999) The mitochondrial permeability transition pore. Biochem Soc Symp 66:167–179

    Article  CAS  PubMed  Google Scholar 

  33. Jones SP, Teshima Y, Akao M, Marban E (2003) Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res 93:697–699

    Article  CAS  PubMed  Google Scholar 

  34. Bhalla K, Ibrado AM, Tourkina E, Tang C, Grant S, Bullock G, Huang Y, Ponnathpur V, Mahoney ME (1993) High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells. Blood 82:3133–3140

    Article  CAS  PubMed  Google Scholar 

  35. Bhalla K, Ibrado AM, Tourkina E, Tang C, Mahoney ME, Huang Y (1993) Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia 7:563–568

    CAS  PubMed  Google Scholar 

  36. Santos-Silva MC, Sampaio de Freitas M, Assreuy J (2001) Killing of lymphoblastic leukemia cells by nitric oxide and taxol: involvement of NF-kappaB activity. Cancer Lett 173:53–61

    Article  CAS  PubMed  Google Scholar 

  37. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136

    Article  CAS  PubMed  Google Scholar 

  38. Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, Galloway DA (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2:72–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jie-Peng Chen and Mrs. Su-Lan Zhao from Strand Biotech Company Limited for Alternol and L1210 cell line. We thank Prof. Jing-Ze Wang from the Institute of Zoology, Chinese Academy of Sciences for the critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ling Li.

About this article

Cite this article

Liu, ZZ., Zhu, J., Sun, B. et al. RETRACTED ARTICLE: Alternol inhibits proliferation and induces apoptosis in mouse lymphocyte leukemia (L1210) cells. Mol Cell Biochem 306, 115–122 (2007). https://doi.org/10.1007/s11010-007-9560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9560-0

Keywords

Navigation