Skip to main content
Log in

ERKs activation and calcium signaling are both required for VEGF induction by vanadium in mouse epidermal Cl41 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The previous studies have demonstrated that vanadium exposure can cause a variety of biological effects. However, the mechanisms involved in the biological effects caused by vanadium are not well understood. Our previous studies have shown that exposure of mouse epidermal Cl 41 cells to vanadate stimulated the phosphorylation of both ERKs and p38K, and calcium signaling leading NFAT activation. In view of the evidence that ERKs and p38 kinase contribute to VEGF induction, we investigated in the present study the potential roles of ERKs, p38K, and calcium signaling in VEGF induction caused by vanadium exposure. Exposure of Cl 41 cells to vanadium led to VEGF induction in both time- and dose-dependent manners. Pre-treatment of Cl 41 cells with PD98059, an inhibitor of MEK1/2-ERKs pathway, but not SB202190, an inhibitor for p38K pathway, resulted in a dramatic inhibition of VEGF induction by vanadium. More interesting, pre-treatment of Cl 41 cells with intracellular calcium chelator, but not calcium channel blocker, resulted in a dramatic decrease in VEGF induction by vanadium. However, both PI-3K inhibitors and overexpression of Δp85, a dominant negative PI-3K mutant, resulted in only a marginal decrease in VEGF induction by vanadium. Moreover, mTOR, as a downstream molecule of PI-3K, did not attribute to VEGF induction by vanadium because rapamycin pre-treatment did not show any inhibitory effect on VEGF induction. These results indicate that ERKs and intracellular stored calcium release play a critical role in VEGF induction by vanadium. PI-3K is partially involved in VEGF induction by vanadium, while p38K and mTOR are not involved. Those results will help us to understand the molecular mechanisms involved in vanadium-induced biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMBA:

7,12-dimethylbenz(a)anthracene

DMSO:

dimethyl sulfoxide

ERK:

extracellular signal-regulated kinases

FBS:

fetal bovine serum

HIF-1:

hypoxia-inducible Factor-1

JNK:

c-Jun N-terminal kinase

MAPK:

mitogen-activated protein kinase

MEM:

Eagle's minimal essential medium

mTOR:

mammalian target of rapamycin

PI-3K:

phosphotidylinositol 3-kinas

TGF-β:

transforming growth factor beta

TPA:

12-O-tetradecanoylphorbol-13-acetate

VEGF:

vascular endothelial growth factor

References

  1. Crans DC, Simone CM, Saha AK, Glew RH: Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase. Biochem Biophys Res Commun 165: 246–250, 1989

    Article  PubMed  Google Scholar 

  2. Nriagu JO, Pacyna JM: Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139, 1988

    Article  PubMed  Google Scholar 

  3. Barceloux DG: Vanadium. J Toxicol Clin Toxicol 37: 265–278, 1999

    PubMed  Google Scholar 

  4. Rehder D, Costa PJ, Geraldes CF, Castro MC, Kabanos T, Kiss T, Meier B, Micera G, Pettersson L, Rangel M, Salifoglou A, Turel I, Wang D: In vitro study of the insulin-mimetic behaviour of vanadium(IV, V) coordination compounds. J Biol Inorg Chem 7: 384–396, 2002

    PubMed  Google Scholar 

  5. Chen F, Shi X: Intracellular signal transduction of cells in response to carcinogenic metals. Crit Rev Oncol Hematol 42: 105–121, 2002

    PubMed  Google Scholar 

  6. Smith JB: Vanadium ions stimulate DNA synthesis in Swiss mouse 3T3 and 3T6 cells. Proc Natl Acad Sci USA 80: 6162–6166, 1983

    PubMed  Google Scholar 

  7. Rojas E, Valverde M, Herrera LA, Altamirano-Lozano M, Ostrosky-Wegman P: Genotoxicity of vanadium pentoxide evaluate by the single cell gel electrophoresis assay in human lymphocytes. Mutat Res 359: 77–84, 1996

    PubMed  Google Scholar 

  8. Rodriguez-Mercado JJ, Roldan-Reyes E, Altamirano-Lozano M: Genotoxic effects of vanadium(IV) in human peripheral blood cells. Toxicol Lett 144: 359–369, 2003

    Article  PubMed  Google Scholar 

  9. Chakraborty T, Ghosh S, Datta S, Chakraborty P, Chatterjee M: Vanadium suppresses sister-chromatid exchange and DNA-protein crosslink formation and restores antioxidant status and hepatocellular architecture during 2-acetylaminofluorene-induced experimental rat hepatocarcinogenesis. J Exp Ther Oncol 3: 346–362, 2003

    Article  PubMed  Google Scholar 

  10. Shisheva A, Ikonomov O, Shechter Y: The protein tyrosine phosphatase inhibitor, pervanadate, is a powerful antidiabetic agent in streptozotocin-treated diabetic rats. Endocrinology 134: 507–510, 1994

    Article  PubMed  Google Scholar 

  11. Kadota S, Fantus IG, Deragon G, Guyda HJ, Posner BI: Stimulation of insulin-like growth factor II receptor binding and insulin receptor kinase activity in rat adipocytes. Effects of vanadate and H2O2. J Biol Chem 262: 8252–8256, 1987

    PubMed  Google Scholar 

  12. Montesano R, Pepper MS, Belin D, Vassalli JD, Orci L: Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 134: 460–466, 1988

    PubMed  Google Scholar 

  13. Miyoshi C, Ohshima N: Vascular endothelial growth factor (VEGF) expression regulates angiogenesis accompanying tumor growth in a peritoneal disseminated tumor model. In Vivo 15: 233–238, 2001

    PubMed  Google Scholar 

  14. Qian D, Lin HY, Wang HM, Zhang X, Liu DL, Li QL, Zhu C: Involvement of ERK1/2 pathway in TGF-beta1-induced VEGF secretion in normal human cytotrophoblast cells. Mol Reprod Dev 68: 198–204, 2004

    Article  PubMed  Google Scholar 

  15. Okajima E, Thorgeirsson UP: Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf, and v-myc transformed cells. Biochem Biophys Res Commun 270: 108–111, 2000

    Article  PubMed  Google Scholar 

  16. Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC: Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 24: 294–300, 2004

    Article  PubMed  Google Scholar 

  17. Jiang BH, Zheng JZ, Aoki M, Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 97: 1749–1753, 2000

    Article  PubMed  Google Scholar 

  18. Park SH, Kim KW, Lee YS, Baek JH, Kim MS, Lee YM, Lee MS, Kim YJ: Hypoglycemia-induced VEGF expression is mediated by intracellular Ca2+ and protein kinase C signaling pathway in HepG2 human hepatoblastoma cells. Int J Mol Med 7: 91–96, 2001

    PubMed  Google Scholar 

  19. Li J, Davidson G, Huang Y, Jiang BH, Shi X, Costa M, Huang C: Nickel compounds act through hosphatidylinositol-3-kinase/Akt-dependent, p70(S6k)-independent pathway to induce hypoxia inducible factor transactivation and Cap43 expression in mouse epidermal Cl41 cells. Cancer Res 64: 94–101, 2004

    Article  PubMed  Google Scholar 

  20. Li J, Tang MS, Liu B, Shi X, Huang C: A critical role of PI-3K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 23: 3932–3944, 2004

    Article  PubMed  Google Scholar 

  21. Gao N, Ding M, Zheng JZ, Zhang Z, Leonard SS, Liu KJ, Shi X, Jiang BH: Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem 277: 31963–31971, 2002

    Article  PubMed  Google Scholar 

  22. Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM, Dvorak HF: Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12: 303–324, 1993

    PubMed  Google Scholar 

  23. Hazzalin CA, Mahadevan LC: MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3: 30–40, 2002

    Google Scholar 

  24. Mukhopadhyay D, Akbarali HI: Depletion of [Ca2+]i inhibits hypoxia-induced vascular permeability factor (vascular endothelial growth factor) gene expression. Biochem Biophys Res Commun 229: 733–738, 1996

    Article  PubMed  Google Scholar 

  25. Krasilnikov MA: Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65: 59–67, 2000

    Google Scholar 

  26. El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ: Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 63: 5173–5177, 2003

    PubMed  Google Scholar 

  27. Nemery B: Metal toxicity and the respiratory tract. Eur Respir J 3: 202–219, 1990

    PubMed  Google Scholar 

  28. Stern A, Yin X, Tsang SS, Davison A, Moon J: Vanadium as a modulator of cellular regulatory cascades and oncogene expression. Biochem Cell Biol 71: 103–112, 1993

    PubMed  Google Scholar 

  29. Sabbioni E, Pozzi G, Devos S, Pintar A, Casella L, Fischbach M: The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV). Carcinogenesis 14: 2565–2568, 1993

    PubMed  Google Scholar 

  30. Ress NB, Chou BJ, Renne RA, Dill JA, Miller RA, Roycroft JH, Hailey JR, Haseman JK, Bucher JR: Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci 74: 287–296, 2003

    Article  PubMed  Google Scholar 

  31. Fu BM, Shen S: Structural mechanisms of acute VEGF effect on microvessel permeability. Am J Physiol Heart Circ Physiol 284: H2124–2135, 2003

    PubMed  Google Scholar 

  32. Leenders W, van Altena M, Lubsen N, Ruiter D, De Waal R: In vivo activities of mutants of vascular endothelial growth factor (VEGF) with differential in vitro activities. Int J Cancer 91: 327–333, 2001

    Article  PubMed  Google Scholar 

  33. Ferrara N: VEGF: An update on biological and therapeutic aspects. Curr Opin Biotechnol 11: 617–624, 2000

    PubMed  Google Scholar 

  34. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D: VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1: 193–202, 2002

    Article  PubMed  Google Scholar 

  35. Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G: Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 62: 603–608, 2002

    PubMed  Google Scholar 

  36. Wang G, Dong Z, Xu G, Yang Z, Shou C, Wang N, Liu T: The effect of antibody against vascular endothelial growth factor on tumor growth and metastasis. J Cancer Res Clin Oncol 124: 615–620, 1998

    Article  PubMed  Google Scholar 

  37. Konishi T, Huang CL, Adachi M, Taki T, Inufusa H, Kodama K, Kohno N, Miyake M: The K-ras gene regulates vascular endothelial growth factor gene expression in non-small cell lung cancers. Int J Oncol 16: 501–511, 2000

    PubMed  Google Scholar 

  38. Fontanini G, Boldrini L, Vignati S, Chine S, Basolo F, Silvestri V, Lucchi M, Mussi A, Angeletti CA, Bevilacqua G: Bcl2 and p53 regulate vascular endothelial growth factor (VEGF)-mediated angiogenesis in non-small cell lung carcinoma. Eur J Cancer 34: 718–723, 1998

    Article  PubMed  Google Scholar 

  39. Milanini J, Vinals F, Pouysségur J, Pagès G: p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273: 18165–18172, 1998

    Article  PubMed  Google Scholar 

  40. Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria-Petit A, Filmus J, Mansour SJ, Ahn NG, Kerbel RS: Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 60: 490–498, 2000

    PubMed  Google Scholar 

  41. Berra E, Pages G, Pouyssegur J: MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 9: 139–145, 2000

    Article  Google Scholar 

  42. Mottet D, Michel G, Renard P, Ninane N, Raes M, Michiels C: Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol 194: 30–44, 2003

    Article  PubMed  Google Scholar 

  43. Alfranca A, Gutierrez MD, Vara A, Aragones J, Vidal F, Landazuri MO: c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription. Mol Cell Biol 22: 12–22, 2002

    Article  PubMed  Google Scholar 

  44. Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X: Role of reactive oxygen species and MAPKs in vanadate-induced G(2)/M phase arrest. Free Radic Biol Med 34: 1333–1342, 2003

    Article  PubMed  Google Scholar 

  45. Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL: The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 4: E263–272, 2002

    Article  PubMed  Google Scholar 

  46. Arnould T, Michiels C, Alexandre I, Remacle J: Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J Cell Physiol 152: 215–221, 1992

    Article  PubMed  Google Scholar 

  47. Leissring MA, Parker I, LaFerla FM: Presenilin-2 mutations modulate amplitude and kinetics of inositol 1,4,5-trisphosphate-mediated calcium signals. J Biol Chem 274: 32535–32538, 1999

    Article  PubMed  Google Scholar 

  48. Metzen E, Fandrey J, Jelkmann W: Evidence against a major role for Ca2+ in hypoxia-induced gene expression in human hepatoma cells (Hep3B). J Physiol 517: 651–657, 1999

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanshu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Tong, Q., Shi, X. et al. ERKs activation and calcium signaling are both required for VEGF induction by vanadium in mouse epidermal Cl41 cells. Mol Cell Biochem 279, 25–33 (2005). https://doi.org/10.1007/s11010-005-8212-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8212-5

Key Words

Navigation