Skip to main content

Advertisement

Log in

Multivariate Parametric Spatiotemporal Models for County Level Breast Cancer Survival Data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In clustered survival settings where the clusters correspond to geographic regions, biostatisticians are increasingly turning to models with spatially distributed random effects. These models begin with spatially oriented frailty terms, but may also include further region-level terms in the parametrization of the baseline hazards or various covariate effects (as in a spatially-varying coefficients model). In this paper, we propose a multivariate conditionally autoregressive (MCAR) model as a mixing distribution for these random effects, as a way of capturing correlation across both the regions and the elements of the random effect vector for any particular region. We then extend this model to permit analysis of temporal cohort effects, where we use the term “temporal cohort” to mean a group of subjects all of whom were diagnosed with the disease of interest (and thus, entered the study) during the same time period (say, calendar year). We show how our spatiotemporal model may be efficiently fit in a hierarchical Bayesian framework implemented using Markov chain Monte Carlo (MCMC) computational techniques. We illustrate our approach in the context of county-level breast cancer data from 22 annual cohorts of women living in the state of Iowa, as recorded by the Surveillance, Epidemiology, and End Results (SEER) database. Hierarchical model comparison using the Deviance Information Criterion (DIC), as well as maps of the fitted county-level effects, reveal the benefit of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Akaike (1973) “Information theory and an extension of the maximum likelihood principle” B. N. Petrov F. Csáki (Eds) 2nd International Symposium on Information Theory Budapest Akadémiai Kiadó 267–281

    Google Scholar 

  • R. M. Assunção (2003) ArticleTitle“Space-varying coefficient models for small area data” Environmetrics 14 453–473

    Google Scholar 

  • S. Banerjee B. P. Carlin (2002) “Spatial semiparametric proportional hazards models for analyzing infant mortality rates in Minnesota counties” C. Gatsonis (Eds) et al. Case Studies in Bayesian Statistics, Volume VI Springer-Verlag New York 137–151

    Google Scholar 

  • S. Banerjee B. P. Carlin (2003) ArticleTitle“Semiparametric spatiotemporal frailty modeling’ Environmetrics 14 523–535

    Google Scholar 

  • S. Banerjee M. M. Wall B. P. Carlin (2003) ArticleTitle“Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota” Biostatistics 4 123–142

    Google Scholar 

  • J. Besag (1974) ArticleTitle“Spatial interaction and the statistical analysis of lattice systems (with discussion)” Journal of Royal Statistical Society Series B 36 192–236

    Google Scholar 

  • J. Besag P. Green D. Higdon K. Mengersen (1995) ArticleTitle“Bayesian computation and stochastic systems (with discussion)” Statistical Science 10 3–66

    Google Scholar 

  • D. Brinkley J. L. Haybittle M. R. Alderson (1984) ArticleTitle“Death certification in cancer of the breast” British Medical Journal 288 465–467

    Google Scholar 

  • B. P. Carlin S. Banerjee (2003) “Hierarchical multivariate CAR models for spatiotemporally correlated survival data (with discussion)” J. M. Bernardo M. J. Bayarri J. O. Berger A. P. Dawid D. Heckerman A. F. M. Smith M. West (Eds) Bayesian Statistics 7 Oxford University Press Oxford 45–63

    Google Scholar 

  • B. P. Carlin J. S. Hodges (1999) ArticleTitle“Hierarchical proportional hazards regression models for highly stratified data” Biometrics 55 1162–1170

    Google Scholar 

  • B. P. Carlin T. A. Louis (2000) Bayes and Empirical Bayes Methods for Data Analysis EditionNumber2 Chapman Hall/CRC Press Boca Raton FL

    Google Scholar 

  • A. E. Gelfand S. K. Ghosh (1998) ArticleTitle“Model choice: a minimum posterior predictive loss approach” Biometrika 85 1–11

    Google Scholar 

  • A. E. Gelfand S. K. Sahu B. P. Carlin (1995) ArticleTitle“Efficient parametrizations for normal linear mixed models” Biometrika 82 479–488

    Google Scholar 

  • A. E. Gelfand S. K. Sahu B. P. Carlin (1996) “Efficient parametrizations for generalized linear mixed models (with discussion)” J. M. Bernardo J. O. Berger A. P. Dawid A. F. M. Smith (Eds) Bayesian Statistics 5 Oxford University Press Oxford 165–180

    Google Scholar 

  • A. E. Gelfand A. F. M. Smith (1990) ArticleTitle“Sampling-based approaches to calculating marginal densities” Journal of American Statistical Association 85 398–409

    Google Scholar 

  • A. E. Gelfand P. Vounatsou (2003) ArticleTitle“Proper multivariate conditional autoregressive models for spatial data analysis” Biostatistics 4 11–25

    Google Scholar 

  • K. Hemming J. Shaw (2002) ArticleTitle“A parametric dynamic survival model applied to breast cancer survival times” Journal of Royal Statistical Society Series C (Applied Statistics) 51 421–435

    Google Scholar 

  • J. G. Ibrahim M.-H Chen D. Sinha (2001) Bayesian Survival Analysis Springer-Verlag New York

    Google Scholar 

  • X. Jin, “Multivariate conditional autoregressive models for spatiotemporal disease data”, Unpublished PhD dissertation, Division of Biostatistics, University of Minnesota, 2005.

  • T. A. Louis, “Discussion of ‘Parameter orthogonality and appropriate conditional inference’, by D. R. Cox and N. Reid”, Journal of Royal Statistical Society, Series B vol. 49 pp. 31, 1987.

  • K. V. Mardia (1988) ArticleTitle“Multi-dimensional multivariate Gaussian Markov random fields with application to image processing” Journal of Multivariate Analysis 24 265–284

    Google Scholar 

  • G. Schwarz (1978) ArticleTitle“Estimating the dimension of a model” Annals of Statistics 6 461–464

    Google Scholar 

  • D. J. Spiegelhalter N. Best B. P. Carlin A. Linde Particlevan der (2002) ArticleTitle“Bayesian measures of model complexity and fit (with discussion)” Journal of Royal Statistical Society Series B 64 583–639

    Google Scholar 

  • M. M. Wall (2004) ArticleTitle“A close look at the spatial structure implied by the CAR and SAR models” Journal of Statistical Planning and Inference 121 311–324

    Google Scholar 

  • L. A. Waller B. P. Carlin H. Xia A. E. Gelfand (1997) ArticleTitle“Hierarchical spatiotemporal mapping of disease rates” Journal American Statistical Association 92 607–617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley P. Carlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Carlin, B.P. Multivariate Parametric Spatiotemporal Models for County Level Breast Cancer Survival Data. Lifetime Data Anal 11, 5–27 (2005). https://doi.org/10.1007/s10985-004-5637-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-004-5637-1

Keywords

Navigation