Skip to main content
Log in

Spatial and temporal variability of future ecosystem services in an agricultural landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Sustaining ecosystem services requires enhanced understanding of their spatial–temporal dynamics and responses to drivers. To date, the majority of research has focused on snapshots of ecosystem services, and their spatial–temporal variability has seldom been studied.

Objectives

We aimed to address: (i) How is variability in ecosystem services partitioned among ‘space’ and ‘time’ components? (ii) Which ecosystem services are spatially/temporally coherent, and which are space–time incoherent? (iii) Are there consistent patterns in ecosystem service variability between urban- and rural-dominated landscapes?

Methods

Biophysical modeling was used to quantify food, water, and biogeochemical-related services from 2011 to 2070 under future scenarios. Linear mixed-effects models and variance partitioning were used to analyze spatial and temporal variability.

Results

Food production, water quality and flood regulation services were overall more variable than climate regulation and freshwater supply. ‘Space’ contributed to a majority of variations across most services, highlighting dominant importance of location-specific factors for service supply. Significant space–time interactions existed for water quality and soil carbon storage, indicating interactive effects between location- and time-specific factors. Variation in the relative controls of ‘space’ vs. ‘time’ factors between urban- and rural-dominated subwatersheds suggests that targeting different key drivers is needed for successful management of ecosystem services in urban vs. rural landscapes.

Conclusions

Our research reveals relative importance of underlying ‘space’ and ‘time’ controls for diverse ecosystem services. Our study presents a framework to investigate spatial–temporal variability of ecosystem services, and provides theoretical and practical implications for anticipating and managing the dynamics of future ecosystem services at the watershed scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahern J, Cilliers S, Niemelä J (2014) The concept of ecosystem services in adaptive urban planning and design: a framework for supporting innovation. Landsc Urban Plan 125:254–259

    Google Scholar 

  • Alcamo J (2008) Environmental futures: the practice of environmental scenario analysis. Elsevier, Oxford

    Google Scholar 

  • Andersson E, McPhearson T, Kremer P, Gomez-Baggethun E, Haase D, Tuvendal M, Wurster D (2015) Scale and context dependence of ecosystem service providing units. Ecosyst Serv 12:157–164

    Google Scholar 

  • Angelstam P, Manton M, Elbakidze M, Sijtsma F, Adamescu MC, Avni N, Beja P, Bezak P, Zyablikova I, Cruz F, Bretagnolle V, Díaz-Delgado R, Ens B, Fedoriak M, Flaim G, Gingrich S, Lavi-Neeman M, Medinets S, Melecis V, Muñoz-Rojas J, Schäckermann J, Stocker-Kiss A, Setälä H, Stryamets N, Taka M, Tallec G, Tappeiner U, Törnblom J, Yamelynets T (2019) LTSER platforms as a place-based transdisciplinary research infrastructure: learning landscape approach through evaluation. Landsc Ecol 34:1461–1484

    Google Scholar 

  • Arneth A, Brown C, Rounsevell MDA (2014) Global models of human decision-making for land-based mitigation and adaptation assessment. Nat Clim Change 4:550–557

    Google Scholar 

  • Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a Mid-latitude forest. Science 294:1688–1691

    CAS  Google Scholar 

  • Bateman IJ, Harwood AR, Mace GM, Watson RT, Abson DJ, Andrews B, Binner A, Crowe A, Day BH, Dugdale S, Fezzi C, Foden J, Hadley D, Haines-Young R, Hulme M, Kontoleon A, Lovett A A, Munday P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, Soest D van, Termansen M (2013) Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341:45–50

    CAS  Google Scholar 

  • Bennett EM (2017) Research frontiers in ecosystem service science. Ecosystems 20:31–37

    Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404

    Google Scholar 

  • Biggs R, Schlüter M, Biggs D, Bohensky EL, BurnSilver S, Cundill G, Dakos V, Daw T M, Evans LS, Kotschy K, Leitch AM, Meek C, Quinlan A, Raudsepp-Hearne C, Robards MD, Schoon ML, Schultz L, West PC (2012) Toward principles for enhancing the resilience of ecosystem services. Annu Rev Environ Resour 37:421–448

    Google Scholar 

  • Booth EG, Qiu J, Carpenter SR, Schatz J, Chen X, Kucharik CJ, Loheide SP, Motew M, Seifert J, Turner MG (2016) From qualitative to quantitative environmental scenarios: translating storylines into biophysical modeling inputs at the watershed scale. Environ Model Softw 85:80–97

    Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Google Scholar 

  • Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282

    Google Scholar 

  • Carpenter SR, Booth EG, Gillon S, Kucharik CJ, Loheide SP, Mase AS, Motew M, Qiu J, Rissman AR, Seifert J, Soylu E, Turner MG, Wardropper CB (2015) Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecol Soc 20(2):10

    Google Scholar 

  • Carpenter SR, Booth EG, Kucharik CJ (2018) Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnol Oceanogr 63:1221–1233

    CAS  Google Scholar 

  • Carpenter SR, Turner MG (2000) Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3:495–497

    Google Scholar 

  • Chaudhary S, McGregor A, Houston D, Chettri N (2015) The evolution of ecosystem services: a time series and discourse-centered analysis. Environ Sci Policy 54:25–34

    Google Scholar 

  • Collins SL, Carpenter SR, Swinton SM, Orenstein DE, Childers DL, Gragson TL, Grimm NB, Grove J M, Harlan SL, Kaye JP, Knapp AK, Kofinas GP, Magnuson JJ, McDowell WH, Melack JM, Ogden LA, Robertson GP, Smith MD, Whitmer AC (2011) An integrated conceptual framework for long-term social–ecological research. Front Ecol Environ 9:351–357

    Google Scholar 

  • Cumming GS, Cumming DH, Redman CL (2006) Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol Soc 11:14

    Google Scholar 

  • Daily G (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • DeFries RS, Foley JA, Asner GP (2004) Land-use choices: Balancing human needs and ecosystem function. Front Ecol Environ 2:249–257

    Google Scholar 

  • Delcourt HR, Delcourt PA, Webb T III (1982) Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat Sci Rev 1:153–175

    Google Scholar 

  • Di HJ, Cameron KC (2016) Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review. J Soils Sediments 16:1401–1420

    CAS  Google Scholar 

  • Donner SD, Kucharik CJ (2003) Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Glob Biogeochem Cycles 17:1085

    Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10:603–628

    CAS  Google Scholar 

  • Gallagher TL, Gergel SE (2017) Landscape indicators of groundwater nitrate concentrations: an approach for trans-border aquifer monitoring. Ecosphere 8:e02047

    Google Scholar 

  • Gaston KJ, Ávila-Jiménez ML, Edmondson JL (2013) Managing urban ecosystems for goods and services. J Appl Ecol 50:830–840

    Google Scholar 

  • Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23:211–219

    Google Scholar 

  • Gouhier TC, Guichard F (2014) Synchrony: quantifying variability in space and time. Methods Ecol Evol 5:524–533

    Google Scholar 

  • Gouhier TC, Guichard F, Menge BA (2010) Ecological processes can synchronize marine population dynamics over continental scales. Proc Natl Acad Sci USA 107:8281–8286

    CAS  Google Scholar 

  • Guerry AD, Polasky S, Lubchenco J, Chaplin-Kramer R, Daily GC, Griffin R, Ruckelshaus M, Bateman IJ, Duraiappah A, Elmqvist T, Feldman MW, Folke C, Hoekstra J, Kareiva PM, Keeler BL, Li S, McKenzie E, Ouyang Z, Reyers B, Ricketts TH, Rockström J, Tallis H, Vira B (2015) Natural capital and ecosystem services informing decisions: From promise to practice. Proc Natl Acad Sci USA 112:7348–7355

    CAS  Google Scholar 

  • Hamdi R, Termonia P, Baguis P (2011) Effects of urbanization and climate change on surface runoff of the Brussels Capital Region: a case study using an urban soil–vegetation–atmosphere-transfer model. Int J Climatol 31:1959–1974

    Google Scholar 

  • Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–354

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Google Scholar 

  • Ingram JSI, Fernandes ECM (2001) Managing carbon sequestration in soils: concepts and terminology. Agric Ecosyst Environ 87:111–117

    Google Scholar 

  • Isbell FI, Polley HW, Wilsey BJ (2009) Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12:443–451

    Google Scholar 

  • Jiang M, Bullock JM, Hooftman DAP (2013) Mapping ecosystem service and biodiversity changes over 70 years in a rural English county. J Appl Ecol 50:841–850

    Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2011) Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21:775–791

    Google Scholar 

  • Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41:W06010

    Google Scholar 

  • Kim JH, Jackson RB (2012) A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J. https://doi.org/10.2136/vzj2011.0021RA

    Article  Google Scholar 

  • Kratz TK, Deegan LA, Harmon ME, Lauenroth WK (2003) Ecological variability in space and time: Insights gained from the US LTER Program. Bioscience 53:57–67

    Google Scholar 

  • Kratz TK, Frost TM, Magnuson JJ (1987) Inferences from spatial and temporal variability in Ecosystems: Long-Term Zooplankton data from lakes. Am Nat 129:830–846

    Google Scholar 

  • Kratz TK, Magnuson JJ, Bayley P, Benson BJ, Berish CW, Bledsoe CS, Blood ER, Bowser CJ, Carpenter SR, Cunningham GL (1995) Temporal and spatial variability as neglected ecosystem properties: lessons learned from 12 North American ecosystems. Evaluating and monitoring the health of large-scale ecosystems. Springer, New York, pp 359–383

    Google Scholar 

  • Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ Qual 32:247

    CAS  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825

    CAS  Google Scholar 

  • Kucharik CJ, Twine TE (2007) Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agr Forest Meteorol 146(3–4):134–158

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    CAS  Google Scholar 

  • Lambin EF, Rounsevell MDA, Geist HJ (2000) Are agricultural land-use models able to predict changes in land-use intensity? Agric Ecosyst Environ 82:321–331

    Google Scholar 

  • Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188

    Google Scholar 

  • Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci USA 111:7492–7497

    CAS  Google Scholar 

  • Legendre P, Cáceres MD, Borcard D (2010) Community surveys through space and time: testing the space–time interaction in the absence of replication. Ecology 91:262–272

    Google Scholar 

  • Leopold A (1949) A Sand County Almanac. Oxford University Press, New York

    Google Scholar 

  • Li C, Zheng H, Li S, Chen X, Li J, Zeng W, Liang Y, Polasky S, Feldman MW, Ruckelshaus M, Ouyang Z, Daily GC (2015) Impacts of conservation and human development policy across stakeholders and scales. Proc Natl Acad Sci USA 112:7396–7401

    CAS  Google Scholar 

  • Lindborg R, Gordon LJ, Malinga R, Bengtsson J, Peterson G, Bommarco R, Deutsch L, Gren Å, Rundlöf M, Smith HG (2017) How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8:e01741

    Google Scholar 

  • Loecke TD, Burgin AJ, Riveros-Iregui DA, Ward AS, Thomas SA, Davis CA, Clair MAS (2017) Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133:7–15

    CAS  Google Scholar 

  • Loreau M, Mouquet N, Holt RD (2003) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6:673–679

    Google Scholar 

  • Lovell ST, Taylor JR (2013) Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc Ecol 28:1447–1463

    Google Scholar 

  • Lovett GM, Jones CG, Turner MG, Weathers KC (2005) Ecosystem function in heterogeneous landscapes. Springer, New York

    Google Scholar 

  • Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12

    Google Scholar 

  • Marsh GP (1864) Man and nature. University of Washington Press, Seattle

    Google Scholar 

  • McLay CDA, Dragten R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204

    CAS  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: Synthesis. Island Press, Washington, D.C., USA

  • Mooney HA, Ehrlich PR (1997) Ecosystem services: a fragmentary history. In: Daily GC (ed) Nature’s services societal dependence on natural ecosystems. Island Press, Washington, DC, pp 11–19

    Google Scholar 

  • Motew MM, Kucharik CJ (2013) Climate‐induced changes in biome distribution, NPP, and hydrology in the Upper Midwest US: A case study for potential vegetation. J Geophys Res Biogeosci 118(1):248–264

    Google Scholar 

  • Motew M, Booth EG, Carpenter SR, Chen X, Kucharik CJ (2018) The synergistic effect of manure supply and extreme precipitation on surface water quality. Environ Res Lett 13:044016

    Google Scholar 

  • Motew M, Chen X, Booth EG, Carpenter SR, Pinkas P, Zipper SC, Loheide SP, Donner SD, Tsuruta K, Vadas PA, Kucharik CJ (2017) The influence of legacy P on lake water quality in a Midwestern agricultural watershed. Ecosystems 20:1468–1482

    CAS  Google Scholar 

  • Motew M, Chen X, Carpenter SR, Booth EG, Seifert J, Qiu J, Loheide II SP, Turner MG, Zipper SC, Kucharik CJ (2019) Comparing the effects of climate and land use on surface water quality using future watershed scenarios. Sci Total Environ 693:133484

    CAS  Google Scholar 

  • Müller F, Baessler C, Schubert H, Klotz S (2010) Long-term ecological research. Springer, Berlin

    Google Scholar 

  • Nedkov S, Burkhard B (2012) Flood regulating ecosystem services—mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol Indic 21:67–79

    Google Scholar 

  • Nimon K, Oswald F, Roberts JK (2015) R Package “yhat”. https://cran.r-project.org/web/packages/yhat/yhat.pdf

  • Ogden FL, Pradhan NR, Downer CW, Zahner JA (2011) Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour Res 47:W12503

    Google Scholar 

  • Oteros-Rozas E, Martín-López B, Daw TM, Bohensky EL, Butler JRA, Hill R, Martin-Ortega J, Quinlan A, Ravera F, Ruiz-Mallén I, Thyresson M, Mistry J, Palomo I, Peterson GD, Plieninger T, Waylen KA, Beach DM, Bohnet I C, Hamann M, Hanspach J, Hubacek K, Lavorel S, Vilardy SP (2015) Participatory scenario planning in place-based social-ecological research: insights and experiences from 23 case studies. Ecol Soc 20(4):32

    Google Scholar 

  • Poisot T, Stouffer DB, Gravel D (2015) Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–251

    Google Scholar 

  • Polasky S, Carpenter SR, Folke C, Keeler B (2011) Decision-making under great uncertainty: environmental management in an era of global change. Trends Ecol Evol 26:398–404

    Google Scholar 

  • Posner SM, McKenzie E, Ricketts TH (2016) Policy impacts of ecosystem services knowledge. Proc Natl Acad Sci USA 113:1760–1765

    CAS  Google Scholar 

  • Prieto I, Violle C, Barre P, Durand JL, Ghesquiere M, Litrico I (2015) Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat Plants 1:15033

    CAS  Google Scholar 

  • Qiu J (2019) Effects of landscape pattern on pollination, pest control, water quality, flood regulation, and cultural ecosystem services: a literature review and future research prospects. Curr Landsc Ecol Rep 4:113–124

    Google Scholar 

  • Qiu J, Carpenter SR, Booth E, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner MG (2018a) Understanding relationships among ecosystem services across spatial scales and over time. Environ Res Lett 13:054020

    Google Scholar 

  • Qiu J, Carpenter SR, Booth EG, Booth EG, Kucharik CJ, Loheide SP (2018b) Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecol Appl 28:119–134

    Google Scholar 

  • Qiu J, Turner MG (2013) Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc Natl Acad Sci USA 110:12149–12154

    CAS  Google Scholar 

  • Qiu J, Turner MG (2015) Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 6:1–19

    CAS  Google Scholar 

  • Qiu J, Wardropper CB, Rissman AR, Turner MG (2017) Spatial fit between water quality policies and hydrologic ecosystem services in an urbanizing agricultural landscape. Landsc Ecol 32:59–75

    Google Scholar 

  • Qiu J, Zipper SC, Motew M, Booth EG, Kucharik CJ, Loheide SP (2019) Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nat Sustain 2:475

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rau A-L, Burkhardt V, Dorninger C, Hjort C, Ibe K, Keßler L, Kristensen JA, McRobert A, Sidemo-Holm W, Zimmermann H (2019) Temporal patterns in ecosystem services research: a review and three recommendations. Ambio. https://doi.org/10.1007/s13280-019-01292-w

    Article  Google Scholar 

  • Rau A-L, von Wehrden H, Abson DJ (2018) Temporal dynamics of ecosystem services. Ecol Econ 151:122–130

    Google Scholar 

  • Raudsepp-Hearne C, Peterson G (2016) Scale and ecosystem services: how do observation, management, and analysis shift with scale—lessons from Québec. Ecol Soc 21(3):16

    Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci USA 107:5242–5247

    CAS  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    CAS  Google Scholar 

  • Ray-Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M (2014) Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods Ecol Evol 5:320–328

    Google Scholar 

  • Reed-Andersen T, Carpenter SR, Lathrop RC (2000) Phosphorus flow in a watershed-lake ecosystem. Ecosystems 3:561–573

    CAS  Google Scholar 

  • Renard D, Rhemtulla JM, Bennett EM (2015) Historical dynamics in ecosystem service bundles. Proc Natl Acad Sci USA 112:13411–13416

    CAS  Google Scholar 

  • Riera JL, Magnuson JJ, Vande Castle JR, MacKenzie MD (1998) Analysis of large-scale spatial heterogeneity in vegetation indices among North American landscapes. Ecosystems 1:268–282

    Google Scholar 

  • Rose KC, Graves RA, Hansen WD, Harvey BJ, Qiu J, Wood SA, Ziter C, Turner MG (2017) Historical foundations and future directions in macrosystems ecology. Ecol Lett 20:147–157

    Google Scholar 

  • Schuetzenmeister A, Dufey F (2017) R Package “VCA”: variance component analysis. https://cran.r-project.org/web/packages/VCA/VCA.pdf

  • Schultz L, Folke C, Österblom H, Olsson P (2015) Adaptive governance, ecosystem management, and natural capital. Proc Natl Acad Sci USA 112:7369–7374

    CAS  Google Scholar 

  • Shi P, Zhang Y, Li Z, Li P, Xu G (2017) Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. CATENA 151:182–190

    CAS  Google Scholar 

  • Smith P, Ashmore MR, Black HIJ, Burgess PJ, Evans CD, Quine TA, Thomson AM, Hicks K, Orr HG (2012) Review: The role of ecosystems and their management in regulating climate, and soil, water and air quality. J Appl Ecol 50:812–829

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. WH Freeman Co, New York

    Google Scholar 

  • Soylu ME, Kucharik CJ, Loheide SP II (2014) Influence of groundwater on plant water use and productivity: development of an integrated ecosystem—variably saturated soil water flow model. Agric For Meteorol 189–190:198–210

    Google Scholar 

  • Stommel H (1963) Varieties of oceanographic experience. Science 139:572–576

    CAS  Google Scholar 

  • Stürck J, Schulp CJ, Verburg PH (2015) Spatio-temporal dynamics of regulating ecosystem services in Europe—the role of past and future land use change. Appl Geogr 63:121–135

    Google Scholar 

  • Thompson JR, Wiek A, Swanson FJ, Carpenter SR, Fresco N, Hollingsworth T, Spies TA, Foster DR (2012) Scenario studies as a synthetic and integrative research activity for long-term ecological research. Bioscience 62:367–376

    Google Scholar 

  • Tracy BF, Foster JL, Butler TJ, Islam MA, Toledo D, Vendramini JMB (2018) Resilience in forage and grazinglands. Crop Sci 58:31–42

    Google Scholar 

  • Uriarte M, Yackulic CB, Lim Y, Arce-Nazario JA (2011) Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landsc Ecol 26:1151

    Google Scholar 

  • Usinowicz J, Qiu J, Kamarainen A (2016) Flashiness and flooding of two lakes in the Upper Midwest during a century of urbanization and climate change. Ecosystems 20:601–615

    Google Scholar 

  • Vogt W (1948) Road to survival. William Sloan Associates, New York

    Google Scholar 

  • Walker BH, Carpenter SR, Rockstrom J, Crépin A-S, Peterson GD (2012) Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol Soc 17(3):30

    Google Scholar 

  • Wardropper C, Gillon S, Mase A, McKinney E, Carpenter SR, Rissman AR (2016) Local perspectives and global archetypes in scenario development. Ecol Soc 21(2):12

    Google Scholar 

  • Wardropper CB, Chang C, Rissman AR (2015) Fragmented water quality governance: constraints to spatial targeting for nutrient reduction in a Midwestern USA watershed. Landsc Urban Plan 137:64–75

    Google Scholar 

  • Wardropper CB, Mase AS, Qiu J, Kohl P, Booth EG, Rissman AR (2020) Ecological worldview, agricultural or natural resource-based activities, and geography affect perceived importance of ecosystem services. Landsc Urban Plan 197:103768

    Google Scholar 

  • Wiebe K, Zurek M, Lord S , Brzezina N, Gabrielyan G, Libertini J, Loch A, Thapa-Parajuli R, Vervoort J, Westhoek H (2018) Scenario development and foresight analysis: Exploring options to inform choices. Annu Rev Environ Resour 43:545–570

    Google Scholar 

  • Wong CP, Jiang B, Kinzig AP, Lee KN, Ouyang Z (2015) Linking ecosystem characteristics to final ecosystem services for public policy. Ecol Lett 18:108–118

    Google Scholar 

  • Zipper SC, Motew M, Booth EG, Chen X, Qiu J, Kucharik CJ, Carpenter SR, Loheide SP (2018) Continuous separation of land use and climate effects on the past and future water balance. J Hydrol 565:106–122

    Google Scholar 

  • Zipper SC, Qiu J, Kucharik CJ (2016) Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environ Res Lett 11:094021

    Google Scholar 

  • Zipper SC, Soylu ME, Booth EG, Loheide SP (2015) Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability. Water Resour Res 51:6338–6358

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Water Sustainability and Climate Program (DEB-1038759), and the North Temperate Lakes Long-Term Ecological Research (DEB-1440297). Special thanks to Jenny Seifert and Elizabeth Katt-Reinders for the development of scenarios, and Pavel Pinkas for parallel computing of model simulations. JQ also acknowledges the USDA National Institute of Food and Agriculture, Hatch (FLA-FTL-005640) and McIntire-Stennis (1014703) projects for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangxiao Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Carpenter, S.R., Booth, E.G. et al. Spatial and temporal variability of future ecosystem services in an agricultural landscape. Landscape Ecol 35, 2569–2586 (2020). https://doi.org/10.1007/s10980-020-01045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01045-1

Keywords

Navigation