Skip to main content

Advertisement

Log in

Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multi-scale habitat modeling?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Multi-scale approaches to habitat modeling have been shown to provide more accurate understanding and predictions of species-habitat associations. It remains however unexplored how spatial and temporal variations in habitat use may affect multi-scale habitat modeling.

Objectives

We aimed at assessing how seasonal and temporal differences in species habitat use and distribution impact operational scales, variable influence, habitat suitability spatial patterns, and performance of multi-scale models.

Methods

We evaluated the environmental factors driving brown bear habitat relationships in the Cantabrian Range (Spain) based on species presence records (ground observations) for the period 2000–2010, LiDAR data on forest structure, and seasonal estimates of foraging resources. We separately developed multi-scale habitat models for (i) each season (spring, summer, fall and winter) (ii) two sub-periods with different population status: 2000–2004 (with brown bear distribution restricted to the main population nuclei) and 2005–2010 (with expanding bear population and range); and (iii) the entire 2000–2010 period.

Results

Scales of effect remained considerably stable across seasonal and temporal variations, but not the influence of certain environmental variables. The predictive ability of multi-scale models was lower in the seasons or periods in which populations used larger areas and a broader variety of environmental conditions. Seasonal estimates of foraging resources, together with LiDAR data, appeared to improve the performance of multi-scale habitat models.

Conclusions

We highlight that the understanding of multi-scale behavioral responses of species to spatial patterns that continually shift over time may be essential to unravel habitat relationships and produce reliable estimates of species distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DP, Forester JD, Turner MG, Frair JL, Merrill EH, Fortin D, Mao JS, Boyce MS (2005) Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landscape Ecol 20(3):257–271

    Article  Google Scholar 

  • Apps CD, McLellan BN, Woods JG, Proctor MF (2004) Estimating grizzly bear distribution and abundance relative to habitat and human influence. J Wildl Manag 68(1):138–152

    Article  Google Scholar 

  • Ballesteros F, Palomero G (2012) Conectividad, demografía y conservación del oso pardo Cantábrico. In: San Miguel A, Ballesteros F, Blanco JC, Palomero G (eds) Manual de buenas prácticas para la gestión de corredores oseros en la Cordillera Cantábrica. Fundación Oso Pardo. Ministerio de Agricultura, Alimentación y Medio Ambiente. Serie Especies Amenazadas, Madrid, pp 21–33

    Google Scholar 

  • Ballesteros F, Martín B, Blanco JC (2012) Calidad de hábitat y presencia de osos en el corredor interpoblacional. In: San Miguel A, Ballesteros F, Blanco JC, Palomero G (eds) Manual de buenas prácticas para la gestión de corredores oseros en la Cordillera Cantábrica. Fundación Oso Pardo. Ministerio de Agricultura, Alimentación y Medio Ambiente. Serie Especies Amenazadas, Madrid, pp 33–56

    Google Scholar 

  • Barnagaud JY, Devictor V, Jiguet F, Archaux F (2011) When species become generalists: on-going large-scale changes in bird habitat specialization. Global Ecol Biogeogr 20(4):630–640

    Article  Google Scholar 

  • Berland A, Nelson T, Stenhouse G, Graham K, Cranston J (2008) The impact of landscape disturbance on grizzly bear habitat use in the Foothills Model Forest, Alberta, Canada. For Ecol Manag 256(11):1875–1883

    Article  Google Scholar 

  • Börger L, Franconi N, Ferretti F, Meschi F, De Michele G, Gantz A, Coulson T (2006) An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am Nat 168(4):471–485

    Article  PubMed  Google Scholar 

  • Bradley BA, Wilcove DS, Oppenheimer M (2010) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12(6):1855–1872

    Article  Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309(5738):1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Ciucci P, Tosoni E, Di Domenico G, Quattrociocchi F, Boitani L (2014) Seasonal and annual variation in the food habits of Apennine brown bears, central Italy. J Mammal 95(3):572–586

    Article  Google Scholar 

  • Ciudad C, Robles H, Matthysen E (2009) Postfledging habitat selection of juvenile middle spotted woodpeckers: a multi-scale approach. Ecography 32:676–682

    Article  Google Scholar 

  • Clevenger AP (1991) Selección de hábitat. In: Clevenger AP, Purroy FJ (eds) Ecología del oso pardo en España. Madrid. Museo Nacional de Ciencias Naturales, CSIC (Monografías 4), pp 73–84

  • Clevenger A, Purroy F, Pelton M (1992) Brown bear (Ursus arctos L.) habitat use in the Cantabrian Mountains, Spain. Mammalia 56(2):203–214

    Article  Google Scholar 

  • Clevenger AP, Purroy FJ, Campos MA (1997) Habitat assessment of a relict brown bear Ursus arctos population in northern Spain. Biol Conserv 80(1):17–22

    Article  Google Scholar 

  • Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12(8):849–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Delibes M (1999) Osos y madroños. Biológica 39:62–63

    Google Scholar 

  • Desrochers A, Renaud C, Hochachka WM, Cadman M (2010) Area-sensitivity by forest songbirds: theoretical and practical implications of scale-dependency. Ecography 33:921–931

    Article  Google Scholar 

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty Fortin M-J, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25(5):626–640

    Article  Google Scholar 

  • Fernandez-Calvo I, Naves J, Fernandez-Gil A, Iglesias JM (2001). Variación interanual en la dieta del oso pardo cantábrico (Ursus arctos) y su relación con la disponibilidad. In: V National Meeting of the Spanish Society for study and conservation of mammals. SECEM, Vitoria, Spain, pp 64–65

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(01):38–49

    Article  Google Scholar 

  • Fisher JT, Anholt B, Volpe JP (2011) Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecol Evol 1:517–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Fortin M-J, James PMA, MacKenzie A, Melles SJ, Rayfield B (2012) Spatial statistics, spatial regression, and graph theory in ecology. Spat Stat 1:100–109

    Article  Google Scholar 

  • Fretwell SD, Lucas HL (1970) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19(1):16–36

    Article  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair AR (2004) Predictive models of movement by Serengeti grazers. Ecology 85(9):2429–2435

    Article  Google Scholar 

  • García P, Lastra J, Marquínez J, Nores C (2007) Detailed model of shelter areas for the Cantabrian brown bear. Ecol Inform 2(4):297–307

    Article  Google Scholar 

  • Gastón A, García-Viñas JA (2011) Modelling species distributions with penalised logistic regressions: a comparison with maximum entropy models. Ecol Model 222(13):2037–2041

    Article  Google Scholar 

  • Gastón A, Blázquez-Cabrera S, Garrote G, Mateo-Sánchez MC, Beier P, Simón MA, Saura S (2015). Contrasting responses to different agricultural covers and dispersal plasticity of woodland species: the case of the endangered Iberian lynx

  • Gómez-Manzanedo M, Urchaga A, Roig S, San Miguel A (2012) Gestión de la vegetación arbustiva y herbácea. In: San Miguel A, Ballesteros F, Blanco JC, Palomero G (eds) Manual de buenas prácticas para la gestión de corredores oseros en la Cordillera Cantábrica. Fundación Oso Pardo Ministerio de Agricultura, Alimentación y Medio Ambiente. Serie Especies Amenazadas, Madrid, pp 101–140

    Google Scholar 

  • Grand J, Buonaccorsi J, Cushman SA, Griffin CR, Neel MC (2004) A multiscale landscape approach to predicting bird and moth rarity hotspots in a threatened pitch pine–scrub oak community. Conserv Biol 18(4):1063–1077

    Article  Google Scholar 

  • Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression and survival analysis. Springer, New York

    Book  Google Scholar 

  • Harrell FE (2014) rms: regression modeling strategies. R package version 4.2-1. http://cran.r-project.org/packages=rms

  • Holland J, Fahrig L (2000) Effect of woody borders on insect density and diversity in crop fields: a landscape-scale analysis. Agric Ecosyst Environ 78(2):115–122

    Article  Google Scholar 

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54(3):227–233

    Article  Google Scholar 

  • Huber D, Roth HU (1993) Movements of European brown bears in Croatia. Acta Theriol 38:151–159

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landscape Ecol 27(7):929–941

    Article  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61(1):65–71

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kie JG, Bowyer RT, Nicholson MC, Boroski BB, Loft ER (2002) Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 83(2):530–544

    Article  Google Scholar 

  • Koreň M, Find’o S, Skuban M, Kajba M (2011) Habitat suitability modelling from non-point data: the case study of brown bear habitat in Slovakia. Ecol Inform 6(5):296–302

    Article  Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59(2):253–260

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Marquínez J (2002) Delimitación de áreas críticas para el oso pardo y cartografía de calidad de hábitat. Instituto de Recursos Naturales y Ordenación del Territorio, Universidad de Oviedo. Consejería de Medio Ambiente. Gobierno del Principado de Asturias

  • Mateo-Sánchez MC, Cushman SA, Saura S (2014) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci 28(8):1531–1546

    Article  Google Scholar 

  • Mattson DJ, Barber K, Maw R, Renkin R (2004) Coefficients of productivity for Yellowstone’s grizzly bear habitat. US Department of the Interior, US Geological Survey

  • McFarland TM, Grzybowski JA, Mathewson HA, Morrison ML (2014) Presence-only species distribution models to predict suitability over a long-term study for a species with a growing population. Wildl Soc Bull 39:218–224

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McGaughey RJ, Carson WW (2003) Fusing LIDAR data, photographs, and other data using 2D and 3D visualization techniques. In: Proceedings of terrain data: applications and visualization–making the connection, October 28–30, pp 16–24

  • Ministerio de Fomento (2015) Plan Nacional de Ortofotografía Aérea. Instituto Geográfico Nacional. www.pnoa.ign.es

  • Naves J, Palomero G (1993) El oso pardo en España (Ursus arctos). ICONA, Madrid

    Google Scholar 

  • Naves J, Wiegand T, Fernández AF, Stephan T (1999) Riesgo de extinción del oso pardo cantábrico. La población occidental. Fundación Oso de Asturias, Oviedo

    Google Scholar 

  • Naves J, Fernández-Gil A, Delibes M (2001) Effects of recreation activities on a brown bear family group in Spain. Ursus 12:135–140

    Google Scholar 

  • Naves J, Wiegand T, Revilla E, Delibes M (2003) Endangered species constrained by natural and human factors: the case of brown bears in northern Spain. Conserv Biol 17(5):1276–1289

    Article  Google Scholar 

  • Naves J, Fernández-Gil A, Rodríguez C, Delibes M (2006) Brown bear food habits at the border of its range: a long-term study. J Mammal 87(5):899–908

    Article  Google Scholar 

  • Nielsen SE, McDermid G, Stenhouse GB, Boyce MS (2010) Dynamic wildlife habitat models: seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biol Conserv 143(7):1623–1634

    Article  Google Scholar 

  • Palomero G (1995) Winter activity of the brown bear in the Cantabrian Mountains (Spain). In: Abstracts of the 10th tenth international conference on bear research and management, Mora, Sweden, 11–14th September

  • Palomero G, Ballesteros F, Blanco JC, García-Serrano A, Herrero J, Nores C (2011) Osas, el comportamiento de las osas y sus crías en la Cordillera Cantábrica, 2nd edn. Fundación Oso Pardo, Fundación biodiversidad, Madrid

    Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27(3):285–298

    Article  Google Scholar 

  • Pope SE, Fahrig L, Merriam HG (2000) Landscape complementation and metapopulation effects on leopard frog populations. Ecology 81(9):2498–2508

    Article  Google Scholar 

  • Posillico M, Meriggi A, Pagnin E, Lovari S, Russo L (2004) A habitat model for brown bear conservation and land use planning in the central Apennines. Biol Conserv 118(2):141–150

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Version 3.1.2

  • Rettie WJ, Messier F (2000) Hierarchical habitat selection by woodland caribou: its relationship to limiting factors. Ecography 23(4):466–478

    Article  Google Scholar 

  • Rode K, Robbins C (2000) Why bears consume mixed diets during fruit abundance. Can J Zool 78(9):1640–1645

    Article  Google Scholar 

  • Savignac C, Desrochers A, Huot J (2000) Habitat use by pileated woodpeckers at two spatial scales in eastern Canada. Can J Zool 78(2):219–225

    Article  Google Scholar 

  • Schaefer JA, Messier F (1995) Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen. Ecography 18(4):333–344

    Article  Google Scholar 

  • Shirk AJ, Wasserman TN, Cushman SA, Raphael MG (2012) Scale dependency of American marten (Martes americana) habitat relations. In: Aubry KB, Zielinski WJ, Raphael MG, Proulx G, Buskirk W (eds) Biology and conservation of martens, sables, and fishers: a new synthesis. Cornell University Press, Ithaca, pp 269–283

    Google Scholar 

  • Swenson JE, Sandegren F, So-Derberg A (1998) Geographic expansion of an increasing brown bear population: evidence for presaturation dispersal. J Anim Ecol 67(5):819–826

    Article  Google Scholar 

  • Tattoni C, Rizzolli F, Pedrini P (2012) Can LiDAR data improve bird habitat suitability models? Ecol Model 245:103–110

    Article  Google Scholar 

  • Triantis KA, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species–area–habitat relationship. J Biogeogr 30(1):19–27

    Article  Google Scholar 

  • Urban DL (1987) Landscape ecology. Bioscience 37:119–127

    Article  Google Scholar 

  • Van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol 80(4):771–785

    Article  PubMed  Google Scholar 

  • Vicente J, Randin CF, Gonçalves J, Metzger MJ, Lomba A, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13(5):1209–1227

    Article  Google Scholar 

  • Vicente JR, Gonçalves J, Honrado JP, Randin CF, Pottier J, Broennimann O, Lomba A, Guisan A (2014) A framework for assessing the scale of influence of environmental factor on ecological patterns. Ecol Complex 20:151–156

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PF, Ter Braak CJ (2001) Toward ecologically scaled landscape indices. Am Nat 157(1):24–41

    Article  CAS  PubMed  Google Scholar 

  • Wasserman TN, Cushman SA, Wallin DO, Hayden J (2012) Multi scale habitat. Relationships of Martes americana in northern Idaho, USA. USDA forest service RMRS research paper RMRS-RP-94

  • Weaver JE, Conway TM, Fortin M-J (2012) An invasive species’ relationship with environmental variables changes across multiple spatial scales. Landscape Ecol 27:1351–1362

    Article  Google Scholar 

  • Wiegand T, Naves J, Stephan T, Fernández A (1998) Assessing the risk of extinction for the brown bear (Ursus arctos) in the Cordillera Cantabrica, Spain. Ecol Monogr 68(4):539–570

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Woodroffe R (2000) Predators and people: using human densities to interpret declines of large carnivores. Anim Conserv 3(2):165–173

    Article  Google Scholar 

  • Zellweger F, Morsdorf F, Purves RS, Braunisch V, Bollmann K (2014) Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodivers Conserv 23(2):289–307

    Article  Google Scholar 

  • Zollner PA (2000) Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes. Landscape Ecol 15(6):523–533

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Spanish Ministry of Science and Innovation research grant GEFOUR (AGL2012-31099) and Technical University of Madrid. We are also grateful to the Regional Administration involved in the brown bear management: Junta de Castilla y León, Gobierno de Cantabria, Principado de Asturias and Xunta de Galicia for providing data. Thanks also to the valuable support provided by Fundación Oso Pardo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Mateo-Sánchez.

Additional information

Special issue: Multi-scale habitat modeling.

Guest Editors: K. McGarigal and S. A. Cushman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateo-Sánchez, M.C., Gastón, A., Ciudad, C. et al. Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multi-scale habitat modeling?. Landscape Ecol 31, 1261–1276 (2016). https://doi.org/10.1007/s10980-015-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0324-z

Keywords

Navigation