Skip to main content
Log in

Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima—one corresponding to the “blocked-state” as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosin-actin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin–tropomyosin–myosin complex. Cell 150:327–338

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown JH, Kim KH, Jun G, Greenfield NJ, Dominguez R, Volkmann N, Hitchcock-DeGregori SE, Cohen C (2001) Deciphering the design of the tropomyosin molecule. Proc Natl Acad Sci USA 98:8496–8501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown JH, Zhou Z, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C (2005) Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci USA 102:18878–18883

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galińska-Rakoczy A, Engel P, Xu C, Jung H, Craig R, Tobacman LS, Lehman W (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379:929–935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  • Gunning PW, Hardeman EC, Lappalanien P, Mulvihill DP (2015) Tropomyosin—master regulator of actin filament function in the cytoskeleton. J Cell Sci (in press). doi:10.1242/jcs.172502

  • Hitchcock-DeGregori SE (2008) Tropomyosin: function follows form. Tropomyosin and the steric mechanism of muscle regulation. Adv Exp Med Biol 644:60–67

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Lehman W (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 29:213–219

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Hsiao JY, Goins LM, Petek NA, Mullins RD (2015) Arp2/3 complex and cofilin modulate binding of tropomyosin to branched actin filaments. Curr Biol 25:1573–1582

    Article  PubMed  CAS  Google Scholar 

  • Johnson M, East DA, Mulvihill DP (2014) Formins determine the functional properties of actin filaments in yeast. Curr Biol 24:1525–1530

  • Lehman W, Craig R, Vibert P (1994) Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three- dimensional reconstruction. Nature 368:65–67

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388:673–681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302:593–606

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Orzechowski M, Li XE, Fischer S, Raunser S (2013) Gestalt-binding of tropomyosin on actin during thin filament activation. J Muscle Res Cell Motil 34:155–163

    Article  PubMed  CAS  Google Scholar 

  • Li XE, Holmes KC, Lehman W, Jung H-S, Fischer S (2010) The shape and flexibility of tropomyosin coiled-coils: implications for actin filament assembly and regulation. J Mol Biol 395:327–399

  • Li XE, Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100:1005–1013

  • Li XE, Orzechowski M, Lehman W, Fischer S (2014) Structure and flexibility of the tropomyosin overlap junction. Biochem Biophys Res Commun 446:304–308

  • Li Y, Mui S, Brown JH, Strand J, Reshetnikova L, Tobacman LS, Cohen C (2002) The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc Natl Acad Sci USA 99:7378–7383

  • Lorenz M, Poole KJV, Popp D, Rosenbaum G, Holmes KC (1995) An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 246:108–119

    Article  PubMed  CAS  Google Scholar 

  • Maytum R, Hatch V, Konrad M, Lehman W, Geeves MA (2008) Ultra short yeast tropomyosins show novel myosin regulation. J Biol Chem 283:1902–1910

    Article  PubMed  CAS  Google Scholar 

  • McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment-1: evidence for three states of the thin filament. Biophys J 65:693–701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meshcheryakov VA, Krieger I, Kostyukova AS, Samatey FA (2011) Structure of a tropomyosin N-terminal fragment at 0.98 Å resolution. Acta Crystallogr D 67:822–825

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Monteiro PB, Lataro RC, Ferro JA, Reinach Fde C (1994) Functional alpha-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group. J Biol Chem 269:10461–10466

    PubMed  CAS  Google Scholar 

  • Nitanai Y, Minakata S, Maeda K, Oda N, Maéda Y (2007) Crystal structures of tropomyosin: flexible coiled-coil. Adv Exp Med Biol 592:137–151

    Article  PubMed  Google Scholar 

  • Oda T, Iwasa M, Aihara T, Maéda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445

    Article  PubMed  CAS  Google Scholar 

  • Orzechowski M, Li XE, Fischer S, Lehman W (2014a) An atomic model of the tropomyosin cable on F-actin. Biophys J 107:694–699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orzechowski M, Moore JR, Fischer S, Lehman W (2014b) Tropomyosin movement on F-actin during muscle activation explained by energy landscapes. Arch Biochem Biophys 545:63–68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pirani A, Xu C, Hatch V, Craig R, Tobacman LS, Lehman W (2005) Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 346:761–772

    Article  PubMed  CAS  Google Scholar 

  • Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A, Tobacman LS, Lehman W, Holmes KC (2006) A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 155:273–284

    Article  PubMed  CAS  Google Scholar 

  • Potter JD, Gergely J (1974) Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13:2697–2703

    Article  PubMed  CAS  Google Scholar 

  • Rao JN, Rivera-Santiago R, Li XE, Lehman W, Dominguez R (2012) Structural analysis of smooth muscle tropomyosin α and β isoforms. J Biol Chem 287:3165–3174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt WM, Lehman W, Moore JR (2015) Direct observation of tropomyosin binding to actin filaments. Cytoskeleton 72:292–303. doi:10.1002/cm.21225

    Article  PubMed  CAS  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    Article  PubMed  CAS  Google Scholar 

  • von der Ecken J, Müller M, Lehman W, Manstein DJ, Penczek PA, Raunser S (2014) Structure of the F-actin-tropomyosin complex. Nature 519:114–117

    Article  PubMed  CAS  Google Scholar 

  • Wegner A (1980) The interaction of alpha, alpha-and alpha, beta-tropomyosin with actin filaments. FEBS Lett 119:245–248

    Article  PubMed  CAS  Google Scholar 

  • Whitby FG, Phillips GN Jr (2000) Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins 38:49–59

  • Yang S, Barbu-Tudoran L, Orzechowski M, Craig R, Trinick J, White H, Lehman W (2014) Three-dimensional organization of troponin on cardiac thin filaments in the relaxed state. Biophys J 106:855–864

Download references

Acknowledgments

These studies were supported by NIH grant R37HL036153 to W.L. The Massachusetts Green High Performance Computing Center and the IWR (University of Heidelberg) provided computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Lehman or Stefan Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rynkiewicz, M.J., Schott, V., Orzechowski, M. et al. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin. J Muscle Res Cell Motil 36, 525–533 (2015). https://doi.org/10.1007/s10974-015-9419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9419-z

Keywords

Navigation