Skip to main content
Log in

Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-κB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, l-NAME (200 μM), the COX-2 specific inhibitor NS-398 (100 μM), the NF-κB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10–100 μM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by l-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 μM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-κB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-κB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NOS:

Nitric oxide synthase

COX:

Cyclooxygenase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

l-NAME:

l-NG-nitroarginine methyl ester

d-NAME:

d-NG-nitroarginine-methyl ester

PDTC:

Pyrrolidine dithiocarbamate

DETA-NO:

Diethylenetriamine NONOate

BrdU:

5-Bromo-2-deoxyuridine

DAPI:

4′6-Diamidino-2-phenylindole

VEGF:

Vascular endothelial growth factor

HGF:

Hepatocyte growth factor

IGF-1:

Insulin-like growth factor 1

References

  • Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859–1874

    CAS  PubMed  Google Scholar 

  • Anderson J, Pilipowicz O (2002) Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide 7(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Betters JL, Lira VA, Drenning JA, Soltow QA, Criswell DS (2008) Supplemental nitric oxide augments satellite cell activity on cultured myofibers from aged mice. Exp Gerontol 43(12):1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Bondesen BA, Mills ST, Kegley KM, Pavlath GK (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 287(2):C475–C483

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy MV, Booth FW, Spangenburg EE (2001) The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats. Int J Sport Nutr Exerc Metab 11(Suppl):S44–S48

    CAS  PubMed  Google Scholar 

  • Csete M, Walikonis J, Slawny N, Wei Y, Korsnes S, Doyle JC, Wold B (2001) Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189(2):189–196

    Article  CAS  PubMed  Google Scholar 

  • Drenning JA, Lira VA, Simmons CG, Soltow QA, Sellman JE, Criswell DS (2008) Nitric oxide facilitates NFAT-dependent transcription in mouse myotubes. Am J Physiol Cell Physiol 294:C1088–C1095

    Article  CAS  PubMed  Google Scholar 

  • Drenning JA, Lira VA, Soltow QA, Canon CN, Valera LM, Brown DL, Criswell DS (2009) Endothelial nitric oxide synthase is involved in calcium-induced Akt signaling in mouse skeletal muscle. Nitric Oxide 21(3–4):192–200

    Article  CAS  PubMed  Google Scholar 

  • Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163(4):1417–1428

    CAS  PubMed  Google Scholar 

  • Hansen JM, Klass M, Harris C, Csete M (2007) A reducing redox environment promotes C2C12 myogenesis: implications for regeneration in aged muscle. Cell Biol Int 31(6):546–553

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Murphy R, Robinson P, Wei L, Boriek AM (2004a) Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. Faseb J 18(13):1524–1535

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004b) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82(7):434–448

    Article  CAS  PubMed  Google Scholar 

  • Kwak JO, Lee WK, Kim HW, Jung SM, Oh KJ, Jung SY, Huh YH, Cha SH (2006) Evidence for cyclooxygenase-2 association with caveolin-3 in primary cultured rat chondrocytes. J Korean Med Sci 21:100–106

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Baek MY, Moon KY, Song WK, Chung CH, Ha DB, Kang MS (1994) Nitric oxide as a messenger molecule for myoblast fusion. J Biol Chem 269(20):14371–14374

    CAS  PubMed  Google Scholar 

  • Lee KH, Kim DG, Shin NY, Song WK, Kwon H, Chung CH, Kang MS (1997) NF-kappaB-dependent expression of nitric oxide synthase is required for membrane fusion of chick embryonic myoblasts. Biochem J 324(Pt 1):237–242

    CAS  PubMed  Google Scholar 

  • Lee SH, Acosta TJ, Yoshioka S, Okuda K (2009) Prostaglandin F(2alpha) regulates the nitric oxide generating system in bovine luteal endothelial cells. J Reprod Dev 55(4):418–424

    Article  CAS  PubMed  Google Scholar 

  • Lim JW, Kim H, Kim KH (2001) Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 81(3):349–360

    CAS  PubMed  Google Scholar 

  • Lira VA, Soltow QA, Long JH, Betters JL, JSellman JE, Criswell DS (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293(4):E1062–E1068

    Article  CAS  PubMed  Google Scholar 

  • Liu SF, Ye X, Malik AB (1999) Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100(12):1330–1337

    CAS  PubMed  Google Scholar 

  • Long JH, Lira VA, Soltow QA, Betters JL, Sellman JE, Criswell DS (2006) Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production. J Muscle Res Cell Motil 27(8):577–584

    Article  CAS  PubMed  Google Scholar 

  • Mendias CL, Tatsumi R, Allen RE (2004) Role of cyclooxygenase-1 and -2 in satellite cell proliferation, differentiation, and fusion. Muscle Nerve 30(4):497–500

    Article  CAS  PubMed  Google Scholar 

  • Newton R, Kuitert LM, Bergmann M, Adcock IM, Barnes PJ (1997) Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1beta. Biochem Biophys Res Commun 237(1):28–32

    Article  CAS  PubMed  Google Scholar 

  • Otis JS, Burkholder TJ, Pavlath GK (2005) Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 310(2):417–425

    Article  CAS  PubMed  Google Scholar 

  • Pisconti A, Brunelli S, Di Padova M, De Palma C, Deponti D, Baesso S, Sartorelli V, Cossu G, Clementi E (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol 172(2):233–244

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez DA, Tapia JC, Fernandez JG, Torres VA, Muñoz N, Galleguillos D, Leyton L, Quest AF (2009) Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell 20:2297–2310

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Leonard SS, Wang S, Ding M (2000) Antioxidant properties of pyrrolidine dithiocarbamate and its protection against Cr(VI)-induced DNA strand breakage. Ann Clin Lab Sci 30(2):209–216

    CAS  PubMed  Google Scholar 

  • Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92(5):2005–2011

    CAS  PubMed  Google Scholar 

  • Soltow QA, Betters JL, Sellman JE, Lira VA, Long JH, Criswell DS (2006) Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 38(5):840–846

    Article  CAS  PubMed  Google Scholar 

  • Spisni E, Bianco MC, Griffoni C, Toni M, D’Angelo R, Santi S, Riccio M, Tomasi V (2003) Mechanosensing role of caveolae and caveolar constituents in human endothelial cells. J Cell Physiol 197:198–204

    Article  CAS  PubMed  Google Scholar 

  • Su B, Mitra S, Gregg H, Flavahan S, Chotani MA, Clark KR, Goldschmidt-Clermont PJ, Flavahan NA (2001) Redox regulation of vascular smooth muscle cell differentiation. Circ Res 89(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Summers PJ, Ashmore CR, Lee YB, Ellis S (1985) Stretch-induced growth in chicken wing muscles: role of soluble growth-promoting factors. J Cell Physiol 125(2):288–294

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi R, Allen RE (2004) Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30(5):654–658

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13(8):2909–2918

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, Hattori A, Ikeuchi Y, Allen RE (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290(6):C1487–C1494

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Lavergne E, Lau KS, Spencer MJ, Stull JT, Wehling M (1998) Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am J Physiol 275(1 Pt 1):C260–C266

    CAS  PubMed  Google Scholar 

  • Vandenburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203(4377):265–268

    Article  CAS  PubMed  Google Scholar 

  • Vandenburgh HH, Hatfaludy S, Sohar I, Shansky J (1990) Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am J Physiol 259(2 Pt 1):C232–C240

    CAS  PubMed  Google Scholar 

  • Vandenburgh HH, Shansky J, Karlisch P, Solerssi RL (1993) Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation. J Cell Physiol 155(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Wozniak AC, Anderson JE (2007) Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236(1):240–250

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Tatsumi R, Kikuiri T, Okamoto S, Nonoshita S, Mizunoya W, Ikeuchi Y, Shimokawa H, Sunagawa K, Allen RE (2006) Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle Nerve 34(3):313–319

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K, Allen RE (2008) Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell Biol 40(10):2183–2191

    Article  CAS  PubMed  Google Scholar 

  • Zalin RJ (1987) The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp Cell Res 172(2):265–281

    Article  CAS  PubMed  Google Scholar 

  • Zhang JS, Kraus WE, Truskey GA (2004) Stretch-induced nitric oxide modulates mechanical properties of skeletal muscle cells. Am J Physiol Cell Physiol 287(2):C292–C299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the University of Florida Research Opportunity Fund (DSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Criswell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltow, Q.A., Lira, V.A., Betters, J.L. et al. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. J Muscle Res Cell Motil 31, 215–225 (2010). https://doi.org/10.1007/s10974-010-9227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9227-4

Keywords

Navigation