Skip to main content
Log in

Diversity in transcriptional start site selection and alternative splicing affects the 5′-UTR of mouse striated muscle myosin transcripts

  • Original Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

We have analyzed nearly 2,000 myosin heavy chain gene (Myh) clones representing over 30 different transcripts from seven of eight striated muscle Myh genes expressed in mouse. We also report the transcriptional start sites (TSS) for the mouse developmental Myh genes. The data reveal a previously unknown diversity of TSSs and 5′-end alternative splicing in these transcripts. The cardiac Myh6 gene had two major TSSs. Use of the major downstream site led to an alternatively spliced second exon. Each of the other Myh genes had one major TATA-directed TSS and one or more minor alternative TSSs, some associated with alternative splicing. The minor transcripts were associated with polysomes and their spatial-temporal expression largely mirrored that of the major transcripts in wild-type, Myh1 null, Myh4 null, injured, and uninjured muscle, except that one form of Myh7, detected in heart, was not detected in diaphragm, and the ratio of the two major Myh6 transcripts varied in some circumstances. These findings indicate that alternative TSS usage and alternative splicing in the 5′-UTR are a general feature of murine Myh gene expression and that Myh gene regulation is more complex than previously appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acakpo-Satchivi LJ, Edelmann W, Sartorius C, Lu BD, Wahr PA, Watkins SC, Metzger JM, Leinwand L, Kucherlapati R (1997) Growth and muscle defects in mice lacking adult myosin heavy chain genes. J Cell Biol 139:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Sartorius CA, Sycuro LK, Leinwand LA (2001a) Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem 276:43524–43533

    Article  CAS  Google Scholar 

  • Allen DL, Harrison BC, Sartorius C, Byrnes WC, Leinwand LA (2001b) Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. Am J␣Physiol Cell Physiol 280:C637–C645

    CAS  Google Scholar 

  • Allen DL, Leinwand LA (2002) Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter. J Biol Chem 277:45323–45330

    CAS  Google Scholar 

  • Allen DL, Weber JN, Sycuro LK, Leinwand LA (2005) Myocyte enhancer factor-2 and serum response factor binding elements regulate fast myosin heavy chain transcription in vivo. J Biol Chem 280:17126–17134

    Article  PubMed  CAS  Google Scholar 

  • Babij P, Periasamy M (1989) Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J Mol Biol 210:673–679

    Article  PubMed  CAS  Google Scholar 

  • Baldwin KM, Haddad F (2001) Plasticity in skeletal, cardiac and smooth muscle: effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90:345–357

    Article  PubMed  CAS  Google Scholar 

  • Beylkin DH, Allen DL, Leinwand LA (2006) MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Dev Biol (in press). DOI 10.1016/j. ydbio.2006.02.04

  • Berne RM, Levy MN (1996) Principles of physiology. Mosby-Year Book Inc, St. Louis, MO

  • Briggs MM, Schachat F (2000) Early specialization of the superfast myosin in extraocular and laryngeal muscles. J␣Exp Biol 203:2485–2494

    PubMed  CAS  Google Scholar 

  • Brown EJ, Schreiber SL (1996) A signaling pathway to translational control. Cell 86:517–520

    Article  PubMed  CAS  Google Scholar 

  • Buckingham ME, Cohen A, Gros F (1976) Cytoplasmic distribution of pulse-labelled poly(A)-containing RNA, particularly 26 S RNA, during myoblast growth and differentiation. J Mol Biol 103:611–626

    Article  PubMed  CAS  Google Scholar 

  • Buttrick PM, Kaplan ML, Kitsis RN, Leinwand LA (1993) Distinct behavior of cardiac myosin heavy chain gene constructs in vivo. Discordance with in vitro results. Circ Res 72:1211–1217

    CAS  Google Scholar 

  • Campbell WG, Gordon SE, Carlson CJ, Pattison JS, Hamilton MT, Booth FW (2001) Differential global gene expression in red and white skeletal muscle. Am J Physiol Cell Physiol 280:C763–C768

    PubMed  CAS  Google Scholar 

  • Coirault C, Lambert F, Marchand-Adam S, Attal P, Chemla D, Lecarpentier Y (1999) Myosin molecular motor dysfunction in dystrophic mouse diaphragm. Am J Physiol 277:C1170–C1176

    PubMed  CAS  Google Scholar 

  • D’albis A, Couteaux R, Janmot C, Roulet A, Mira JC (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem 174:103–110

    CAS  Google Scholar 

  • D’Albis A, Couteaux R, Janmot C, Mira JC (1989) Myosin isoform transitions in regeneration of fast and slow muscles during postnatal development of the rat. Dev Biol 135:320–325

    Article  PubMed  CAS  Google Scholar 

  • Da Costa N, Beuzen N, Johnston I, McGillivray C, Sun YM, Chang KC (2000) The 5’-end of the porcine perinatal myosin heavy chain gene shows alternative splicing and is clustered with repeat elements. J Muscle Res Cell Motil 21:183–188

    Article  PubMed  CAS  Google Scholar 

  • Diagana TT, North DL, Jabet C, Fiszman MY, Takeda S, Whalen RG (1997) The transcriptional activity of a muscle-specific promoter depends critically on the structure of the TATA element and its binding protein. J Mol Biol 265:480–493

    Article  PubMed  CAS  Google Scholar 

  • The Fantom Consortium (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  Google Scholar 

  • Gulick J, Subramaniam A, Neumann J, Robbins J (1991) Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem 266:9180–9185

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Suzuki Y, Kasai Y, Morohoshi K, Yamada T, Sese J, Morishita S, Sugano S, Matsushima K (2004) 5’-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol 22:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Adelstein RS (1995) Neuronal cell expression of inserted isoforms of vertebrate nonmuscle myosin heavy chain II-B. J Biol Chem 270:14533–14540

    Article  PubMed  CAS  Google Scholar 

  • Iyer V, Struhl K (1995) Mechanism of differential utilization of the his3 TR and TC TATA elements. Mol Cell Biol 15:7059–7066

    PubMed  CAS  Google Scholar 

  • Lu BD, Allen DL, Leinwand LA, Lyons GE (1999) Spatial and temporal changes in myosin heavy chain gene expression in skeletal muscle development. Dev Biol 216:312–326

    Article  PubMed  CAS  Google Scholar 

  • Lucas CA, Hoh JF (2003) Distribution of developmental myosin heavy chains in adult rabbit extraocular muscle: identification of a novel embryonic isoform absent in fetal limb. Invest Ophthalmol Vis Sci 44:2450–2456

    Article  PubMed  Google Scholar 

  • Lyons GE, Ontell M, Cox R, Sassoon D, Buckingham M (1990a) The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol 111:1465–1476

    Article  CAS  Google Scholar 

  • Lyons GE, Schiaffino S, Sassoon D, Barton P, Buckingham M (1990b) Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111:2427–2436

    Article  CAS  Google Scholar 

  • Meric F, Hunt KK (2002) Translation initiation in cancer: a novel target for therapy. Mol Cancer Ther 1:971–979

    PubMed  CAS  Google Scholar 

  • Morkin E (2000) Control of cardiac myosin heavy chain gene expression. Microsc Res Tech 50:522–531

    Article  PubMed  CAS  Google Scholar 

  • Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Kuro-o M, Babij P, Periasamy M (1989) Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem 264:9734–9737

    PubMed  CAS  Google Scholar 

  • Oliva D, Venturella S, Passantino R, Feo S, Giallongo A (1995) Conserved alternative splicing in the 5’-untranslated region of the muscle-specific enolase gene. Primary structure of mRNAs, expression and influence of secondary structure on the translation efficiency. Eur J Biochem 232:141–149

    Article  PubMed  CAS  Google Scholar 

  • Ontell M, Ontell MP, Sopper MM, Mallonga R, Lyons G, Buckingham M (1993) Contractile protein gene expression in primary myotybes of embyryonic hindlimb muscles. Development 117:1435–1444

    PubMed  CAS  Google Scholar 

  • Parker MH, Seale P, Rudnicki MA (2003) Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4:497–507

    Article  PubMed  CAS  Google Scholar 

  • Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Ginard B (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem 259:13595–13604

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    PubMed  CAS  Google Scholar 

  • Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Andrade FH (2001) Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci USA 98:12062– 12067

    Article  PubMed  CAS  Google Scholar 

  • Porter JD, Merriam AP, Leahy P, Gong B, Feuerman J, Cheng G, Khanna S (2004) Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. Hum Mol Genet 13:257–269

    Article  PubMed  CAS  Google Scholar 

  • Reggiani C, Brocks L, Wirtz P, Loermans H, te Kronnie G (1992) Myosin isoforms in hindlimb muscles of normal and dystrophic (ReJ129 dy/dy) mice. Muscle Nerve 15:199–208

    Article  PubMed  CAS  Google Scholar 

  • Rindt H, Gulick J, Knotts S, Neumann J, Robbins J (1993) In␣vivo analysis of the murine β-myosin heavy chain gene promoter. J Biol Chem 268:5332–5338

    PubMed  CAS  Google Scholar 

  • Rindt H, Subramaniam A, Robbins J (1995) An in vivo analysis of transcriptional elements in the mouse α-myosin heavy chain gene promoter. Transgenic Res 4:397–405

    Article  PubMed  CAS  Google Scholar 

  • Robert B, Daubas P, Akimenko MA, Cohen A, Garner I, Guenet JL, Buckingham M (1984) A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129–140

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Exinger F, Losson R (1990) Cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol 10:5257–5270

    PubMed  CAS  Google Scholar 

  • Sartore S, Gorza L, Schiaffino S (1982) Fetal myosin heavy chains in regenerating muscle. Nature 298:294–296

    Article  PubMed  CAS  Google Scholar 

  • Sartorius CA, Lu BD, Acakpo-Satchivi L, Jacobsen RP, Byrnes WC, Leinwand LA (1998) Myosin heavy chains IIa and IId are functionally distinct in the mouse. J Cell Biol 141:943–953

    Article  PubMed  CAS  Google Scholar 

  • Standiford DM, Sun WT, Davis MB, Emerson CP Jr (2001) Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts. Genetics 157:259–271

    PubMed  CAS  Google Scholar 

  • Subramaniam A, Gulick J, Neumann J, Knotts S, Robbins J␣(1993) Transgenic analysis of the thyroid-responsive elements in the α-cardiac myosin heavy chain gene promoter. J␣Biol Chem 268:4331–4336

    PubMed  CAS  Google Scholar 

  • Sun YM, da Costa N, Birrell R, Archibald AL, Alzuherri H, Chang KC (2001) Molecular and quantitative characterisation of the porcine embryonic myosin heavy chain gene. J␣Muscle Res Cell Motil 22:317–327

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H, Ota T, Isogai T, Tanaka T, Nakamura Y, Suyama A, Sakaki Y, Morishita S, Okubo K, Sugano S (2001) Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res 11:677–684

    Article  PubMed  CAS  Google Scholar 

  • Swank DM, Bartoo ML, Knowles AF, Iliffe C, Bernstein SI, Molloy JE, Sparrow JC (2001) Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J Biol Chem 276:15117–15124

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Kawamoto S, Adelstein RS (1992) Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. Cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. J Biol Chem 267:17864–17871

    PubMed  CAS  Google Scholar 

  • Takeda S, North DL, Lakich MM, Russell SD, Whalen RG (1992) A possible regulatory role for conserved promoter motifs in an adult-specific muscle myosin gene from mouse. J Biol Chem 267:16957–16967

    PubMed  CAS  Google Scholar 

  • Takeda S, North DL, Diagana T, Miyagoe Y, Lakich MM, Whalen RG (1995) Myogenic regulatory factors can activate TATA-containing promoter elements via an E-box independent mechanism. J Biol Chem 270:15664–15670

    Article  PubMed  CAS  Google Scholar 

  • The Mammalian Gene Collection Program (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    Article  Google Scholar 

  • Vikstrom KL, Factor SM, Leinwand LA (1996) Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med 2:556–567

    PubMed  CAS  Google Scholar 

  • Walro JM, Kucera J (1999) Why adult mammalian intrafusal and extrafusal fibers contain different myosin heavy-chain isoforms. Trends Neurosci 22:180–184

    Article  PubMed  CAS  Google Scholar 

  • Warrick HM, Spudich JA (1987) Myosin structure and function in cell motility. Annu Rev Cell Biol 3:379–421

    Article  PubMed  CAS  Google Scholar 

  • Weiss A, McDonough D, Wertman B, Acakpo-Satchivi L, Montgomery K, Kucherlapati R, Leinwand L, Krauter K (1999) Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci USA 96:2958–2963

    Article  PubMed  CAS  Google Scholar 

  • Weydert A, Daubas P, Lazaridis I, Barton P, Garner I, Leader DP, Bonhomme F, Catalan J, Simon D, Guenet JL et al (1985) Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc Natl Acad Sci USA 82:7183–7187

    Article  PubMed  CAS  Google Scholar 

  • Weydert A, Barton P, Harris AJ, Pinset C, Buckingham M (1987) Developmental pattern of mouse skeletal myosin heavy chain gene transcripts in vivo and in vitro. Cell 49:121–129

    Article  PubMed  CAS  Google Scholar 

  • White SL, Zhou MY, Low RB, Periasamy M (1998) Myosin heavy chain isoform expression in rat smooth muscle development. Am J Physiol (Cell Physiol 44) 275:C581–C589

    CAS  Google Scholar 

  • Yamada A, Yoshio M, Oiwa K, Nyitray L (2000) Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol 295:169–178

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Bernstein SI (2001) Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev 101:35–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Public Health Service grants NIH GM029090, NIH HL050560, and NIH AR048817 to L. A. L., and NIH 5 P60 DA011015, and NIH 5 R01 DA012845 to K. S. K. Training grant support to B. K. D. was from NIH HL007851. We thank Angelika Paul for cardiotoxin-damaged muscle RNA and mouse anatomy lessons. We thank Matthew Bell for 15.5 and 17.5 dpc mice; Allison Cleary and Doris Beylkin for neonates; Stephen Luckey, Brian Stauffer, Angelika Paul and John Konhilas for general assistance; and Dave Allen for tissue culture lessons. Joseph Heimiller helped with sequence analysis, Eric Robbins helped with DNA preparation and Lindsay Smith helped with PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Krauter.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennehey, B.K., Leinwand, L.A. & Krauter, K.S. Diversity in transcriptional start site selection and alternative splicing affects the 5′-UTR of mouse striated muscle myosin transcripts. J Muscle Res Cell Motil 27, 559–575 (2006). https://doi.org/10.1007/s10974-006-9071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9071-8

Keywords

Navigation