Skip to main content
Log in

Novel sarco(endo)plasmic reticulum proteins and calcium homeostasis in striated muscles

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The impact of calcium signaling on many cellular functions is reflected by the tight regulation of the intracellular Ca2+ concentration that is ensured by diverse pumps, channels, transporters and Ca2+ binding proteins. In this review, we present recently identified novel sarco(endo)plasmic reticulum proteins that may have a potential involvement in the regulation of Ca2+ homeostasis in striated muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AA, Treves S, Biral D, Betto R, Sandona D, Ronjat M, Zorzato F, 2003 The novel skeletal muscle sarcoplasmic reticulum JP-45 protein. Molecular cloning, tissue distribution, developmental expression, and interaction with alpha 1.1 subunit of the voltage-gated calcium channel J Biol Chem 278: 39987–39992

    Article  PubMed  CAS  Google Scholar 

  • Avila G, 2005 Intracellular Ca2+ dynamics in malignant hyperthermia and central core disease: established concepts, new cellular mechanisms involved Cell Calcium 37: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Beard NA, Laver DR, Dulhunty AF, 2004 Calsequestrin and the calcium release channel of skeletal and cardiac muscle Prog Biophys Mol Biol 85: 33–69

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P, 1998 Calcium: a life and death signal Nature 395: 645–648

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, 2002 Cardiac excitation-contraction coupling Nature 415: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, 2004 Macromolecular complexes regulating cardiac ryanodine receptor function J Mol Cell Cardiol 37: 417–429

    Article  PubMed  CAS  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C, 1988 Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle J Cell Biol 107: 2587–2600

    Article  PubMed  CAS  Google Scholar 

  • Buratti R, Prestipino G, Menegazzi P, Treves S, Zorzato F, 1995 Calcium dependent activation of skeletal muscle Ca2+ release channel (ryanodine receptor) by calmodulin Biochem Biophys Res Commun 213: 1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Coronado R, Morrissette J, Sukhareva M, Vaughan DM, 1994 Structure and function of ryanodine receptors Am J Physiol 266: C1485–14504

    PubMed  CAS  Google Scholar 

  • Costello B, Chadwick C, Saito A, Chu A, Maurer A, Fleischer S, 1986 Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum J Cell Biol 103: 741–753

    Article  PubMed  CAS  Google Scholar 

  • Damiani E, Tobaldin G, Bortoloso E, Margreth A, 1997 Functional behaviour of the ryanodine receptor/Ca(2+)-release channel in vesiculated derivatives of the junctional membrane of terminal cisternae of rabbit fast muscle sarcoplasmic reticulum Cell Calcium 22: 129–150

    Article  PubMed  CAS  Google Scholar 

  • Delbono O, Renganathan M, Messi ML, 1997 Excitation-Ca2+ release-contraction coupling in single aged human skeletal muscle fiber Muscle Nerve Suppl. 5: S88–S99

    Article  PubMed  CAS  Google Scholar 

  • Dinchuk JE, Henderson NL, Burn TC, Huber R, Ho SP, Link J, O’Neil KT, Focht RJ, Scully MS, Hollis JM, Hollis GF, Friedman PA, 2000 Aspartyl beta -hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin J Biol Chem 275: 39543–39554

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Haarmann CS, Green D, Laver DR, Board PG, Casarotto MG, 2002 Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle Prog Biophys Mol Biol 79: 45–75

    Article  PubMed  CAS  Google Scholar 

  • Ferreiro A, Monnier N, Romero NB, Leroy JP, Bonnemann C, Haenggeli CA, Straub V, Voss WD, Nivoche Y, Jungbluth H, Lemainque A, Voit T, Lunardi J, Fardeau M, Guicheney P, 2002 A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene Ann Neurol 51: 750–759

    Article  PubMed  CAS  Google Scholar 

  • Flucher BE, 1992 Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad Dev Biol 154: 245–260

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Protasi F, 1997 Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions Physiol Rev 77: 699–729

    PubMed  CAS  Google Scholar 

  • Gommans IM, Vlak MH, de Haan A, van Engelen BG, 2002 Calcium regulation and muscle disease J Muscle Res Cell Motil 23: 59–63

    Article  PubMed  CAS  Google Scholar 

  • González E, Messi L, Zheng Z, Delbono O, 2003 Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice J Physiol 552: 833–844

    Article  PubMed  CAS  Google Scholar 

  • Gyorke S, Gyorke I, Lukyanenko V, Terentyev D, Viatchenko-Karpinski S, Wiesner TF, 2002 Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle Front Biosci 7: d1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Hellstern S, Pegoraro S, Karim CB, Lustig A, Thomas DD, Moroder L, Engel J, 2001 Sarcolipin, the shorter homologue of phospholamban, forms oligomeric structures in detergent micelles and in liposomes J Biol Chem 276: 30845–30852

    Article  PubMed  CAS  Google Scholar 

  • Hong CS, Kwak YG, Ji JH, Chae SW, Kim do H, 2001 Molecular cloning and characterization of mouse cardiac junctate isoforms Biochem Biophys Res Commun 289: 882–887

    Article  PubMed  CAS  Google Scholar 

  • Imagawa T, Smith JS, Coronado R, Campbell KP, 1987 Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel J Biol Chem 262: 16636–16643

    PubMed  CAS  Google Scholar 

  • Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K, Takeshima H, 2001 Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1 J Cell Biol 154: 1059–1067

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P, Marks AR, 1992 FK506 binding protein associated with the calcium release channel (ryanodine receptor) J Biol Chem 267: 9474–9477

    PubMed  CAS  Google Scholar 

  • Jones LR, Zhang L, Sanborn K, Jorgensen AO, Kelley J, 1995 Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum J Biol Chem 270: 30787–30796

    Article  PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, Lerche H, Lehmann-Horn F, 2002 Skeletal muscle channelopathies J Neurol 249: 1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Kasai M, 1994 Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin Biochem Biophys Res Commun 199: 1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Caswell AH, Talvenheimo JA, Brandt NR, 1990 Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle Biochemistry 29: 9281–9289

    Article  PubMed  CAS  Google Scholar 

  • Lai FA, Erickson HP, Rousseau E, Liu QY, MeissnerG, 1988 Purification and reconstitution of the calcium release channel from skeletal muscle Nature 331: 315–319

    Article  PubMed  CAS  Google Scholar 

  • Loke J, MacLennan DH, 1998 Malignant hyperthermia and central core disease: disorders of Ca2+ release channels Am J Med 104: 470–486

    Article  PubMed  CAS  Google Scholar 

  • Lyfenko AD, Goonasekera SA, Dirksen RT, 2004 Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease Biochem Biophys Res Commun 322: 1256–1266

    Article  PubMed  CAS  Google Scholar 

  • MacKrill JJ, 1999 Protein-protein interactions in intracellular Ca2+-release channel function Biochem J, 337: 345–361

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Wong PT, 1971 Isolation of a calcium-sequestering protein from sarcoplasmic reticulum Proc Natl Acad Sci USA, 68: 1231–1235

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, 2000 Ca2+ signalling and muscle disease Eur J Biochem 267: 5291–5297

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Asahi M, Tupling AR, 2003 The regulation of SERCA-type pumps by phospholamban and sarcolipin Ann NY Acad Sci 986: 472–480

    Article  PubMed  CAS  Google Scholar 

  • Maier LS, Bers DM, 2002 Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond J Mol Cell Cardiol 34: 919–939

    Article  PubMed  CAS  Google Scholar 

  • Marsili V, Mancinelli L, Menchetti G, Fulle S, Baldoni F, Fano G, 1992 S-100ab increases Ca2+ release in purified sarcoplasmic reticulum vesicles of frog skeletal muscle J Muscle Res Cell Motil 13: 511–515

    Article  PubMed  CAS  Google Scholar 

  • Marty I, Robert M, Villaz M, De Jongh K, Lai Y, Catterall WA, Ronjat M, 1994 Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle Proc Natl Acad Sci USA 91: 2270–2274

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Ondrias K, Marks AR, 1998 Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) Science 281: 818–821

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR, 2001 Coupled gating between cardiac calcium release channels (ryanodine receptors) Circ Res 88: 1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Meissner G, 1994 Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors Annu Rev Physiol 56: 485–508

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi J, Pozzan T, 1998 The endoplasmic reticulum Ca2+ store: a view from the lumen Trends Biochem Sci. 23: 10–14

    Article  PubMed  CAS  Google Scholar 

  • Melzer W, Herrmann-Frank A, Luttgau HC, 1995 The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres Biochim Biophys Acta 1241: 59–116

    PubMed  Google Scholar 

  • Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI, 1995 Association of sorcin with the cardiac ryanodine receptor J Biol Chem 270: 26411–26418

    Article  PubMed  CAS  Google Scholar 

  • Milner RE, Famulski KS, Michalak M, 1992 Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells Mol Cell Biochem 112: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H, 2000 Abnormal intracellular Ca2+ homeostasis and disease Cell Calcium 28: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Murray BE, Ohlendieck K, 1997 Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads Biochem J, 324: 689–696

    PubMed  CAS  Google Scholar 

  • Odermatt A, Taschner PE, Scherer SW, Beatty B, Khanna VK, Cornblath DR, Chaudhry V, Yee WC, Schrank B, Karpati G, Breuning MH, Knoers N, MacLennan DH, 1997 Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease Genomics 45: 541–553

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, 2003 Mitochondrial regulation of intracellular Ca2+ signaling: more than just simple Ca2+ buffers News Physiol Sci 18: 252–256

    PubMed  CAS  Google Scholar 

  • Pasquali C, Fialka I, Huber LA, 1999 Subcellular fractionation, electromigration analysis and mapping of organelles J Chromatogr B Biomed Sci Appl 722: 89–102

    Article  PubMed  CAS  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J, 1994 Molecular and cellular physiology of intracellular calcium stores Physiol Rev 74: 595–636

    PubMed  CAS  Google Scholar 

  • Protasi F, Franzini-Armstrong C, Allen PD, 1998 Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle J Cell Biol 140: 831–842

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, 2002 Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells Front Biosci 7: d650–658

    Article  PubMed  CAS  Google Scholar 

  • Renganathan M, Messi ML, Delbono O, 1997 Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle J Membr Biol 157: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Renganathan M, Messi ML, Delbono O, 1998 Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors J Biol Chem 273: 28845–28851

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Ma JJ, Gonzalez A, 1991 The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle J Muscle Res Cell Motil 12: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Pizarro G, Stefani E, 1992 Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling Annu Rev Physiol 54: 109–133

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pozzan T, 2003 When calcium goes wrong: genetic alterations of a ubiquitous signaling route Nat Genet 34: 135–141

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Seiler S, Chu A, Fleischer S, 1984 Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle J Cell Biol 99: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Simmerman HK, Jones LR, 1998 Phospholamban: protein structure, mechanism of action, and role in cardiac function Physiol Rev 78: 921–947

    PubMed  CAS  Google Scholar 

  • Takekura H, Kasuga N, Kitada K, Yoshioka T, 1996 Morphological changes in the triads and sarcoplasmic reticulum of rat slow and fast muscle fibres following denervation and immobilization J Muscle Res Cell Motil 17: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K, 2000 Junctophilins: a novel family of junctional membrane complex proteins Mol Cell 6: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G, Ronjat M, Zorzato F, 1997 Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle Biochemistry 36: 11496–11503

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Feriotto G, Moccagatta L, Gambari R, Zorzato F, 2000 Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarcoendoplasmic reticulum membrane J Biol Chem 275: 39555–39568

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ducreux S, Zhu MX, Mikoshiba K, Girard T, Smida-Rezgui S, Ronjat M, Zorzato F, 2004 Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion J Cell Biol 166: 537–548

    Article  PubMed  CAS  Google Scholar 

  • Valdivia HH, 1998 Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors Trends Pharmacol Sci 19: 479–482

    Article  PubMed  CAS  Google Scholar 

  • Wehrens XH, Lehnart SE, Marks AR, 2005 Intracellular calcium release and cardiac disease Annu Rev Physiol 67: 69–98

    Article  PubMed  CAS  Google Scholar 

  • Yano M, el-Hayek R, and Ikemoto N (2005) Conformational changes in the junctional foot protein/Ca2+ release channel mediate depolarization-induced Ca2+ release from sarcoplasmic reticulum. J Biol Chem 270: 3017–3021

    Google Scholar 

  • Zimmer DB, Cornwall EH, Landar A, Song W, 1995 The S100 protein family: history, function, and expression Brain Res Bull 37: 417–429

    Article  PubMed  CAS  Google Scholar 

  • Zorzato F, Anderson AA, Ohlendieck K, Froemming G, Guerrini R, Treves S, 2000 Identification of a novel 45 kDa protein (JP-45) from rabbit sarcoplasmic-reticulum junctional-face membrane Biochem J 351: 537–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the European Union HPRN-CT-2002–00331, from the Schweizereische die Erforschung der Muskelkrankheiten, from the Association Française contre les Myopathies, from F.I.R.B RBAU01ERMX and from the Swiss National Science Foundation SNF 3200-067820.02. This work was also supported by Department of Anaesthesia, University Hospital Basel.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DIVET, A., PAESANTE, S., BLEUNVEN, C. et al. Novel sarco(endo)plasmic reticulum proteins and calcium homeostasis in striated muscles. J Muscle Res Cell Motil 26, 7–12 (2005). https://doi.org/10.1007/s10974-005-9001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-005-9001-1

Keywords

Navigation