Skip to main content
Log in

Thermal decomposition kinetics of the antiparkinson drug “entacapone” under isothermal and non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition kinetics of entacapone (ENT) have been investigated via thermogravimetric analysis under non-isothermal and isothermal conditions which provide useful stability information for their processing in the pharmaceutical industry and also for predicting shelf life and suitable storage conditions. The determination of the kinetic parameters for the decomposition process under non-isothermal conditions in a nitrogen atmosphere at four heating rates (5, 10, 15, and 20 °C min−1) was performed. Kinetic parameters of the decomposition process for ENT were calculated through Friedman, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Li–Tang methods. This work demonstrates that the activation energies calculated from the decomposition reactions by different methods are consistent with each other. Moreover, the thermodynamic functions of the decomposition reaction were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Männistö P, Ulmanen I, Lundström K, Taskinen J, Tenhunen J, Tilgmann C, et al. Characteristics of catechol O-methyltransferase (COMT) and properties of selective COMT inhibitors. Progress in drug research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques. Berlin: Springer; 1992. p. 291–350.

    Google Scholar 

  2. Mannisto P. Catechol O-methyltransferase: characterization of the protein, its gene, and the preclinical pharmacology of COMT inhibitors. Adv Pharmacol. 1998;42:324–8.

    Article  CAS  Google Scholar 

  3. Savolainen J, Leppanen J, Forsberg M, Taipale H, Nevalainen T, Huuskonen J, et al. Synthesis and in vitro/in vivo evaluation of novel oral N-alkyl-and N,N-dialkyl-carbamate esters of entacapone. Life Sci. 2000;67(2):205–16.

    Article  CAS  Google Scholar 

  4. Rajeswari K, Sankar G, Rao AL, Rao J. A new spectrophotometric method for the determination of entacapone in pure and tablet dosage form. Int J Chem Sci. 2006;4(3):694–6.

    CAS  Google Scholar 

  5. Paim C, Gonçalves H, Lange A, Miron D, Steppe M. Validation of UV spectrophotometric method for quantitative determination of entacapone in tablets using experimental design of Plackett–Burman for robustness evaluation and comparison with HPLC. Anal Lett. 2008;41(4):571–81.

    Article  CAS  Google Scholar 

  6. Paim C, Gonçalves H, Miron D, Sippel J, Steppe M. Stability-indication LC determination of entacapone in tablets. Chromatographia. 2007;65(9–10):595–9.

    Article  CAS  Google Scholar 

  7. Karlsson M, Wikberg T. Liquid chromatographic determination of a new catechol-O-methyltransferase inhibitor, entacapone, and its Z-isomer in human plasma and urine. J Pharm Biomed Anal. 1992;10(8):593–600.

    Article  CAS  Google Scholar 

  8. Keski-Hynnilä H, Raanaa K, Forsberg M, Männistö P, Taskinen J, Kostiainen R. Quantitation of entacapone glucuronide in rat plasma by on-line coupled restricted access media column and liquid chromatography–tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 2001;759(2):227–36.

    Article  Google Scholar 

  9. Ramakrishna N, Vishwottam K, Wishu S, Koteshwara M, Chidambara J. High-performance liquid chromatography method for the quantification of entacapone in human plasma. J Chromatogr B. 2005;823(2):189–94.

    Article  CAS  Google Scholar 

  10. Lehtonen P, Mälkki-Laine L, Wikberg T. Separation of the glucuronides of entacapone and its (Z)-isomer in urine by micellar electrokinetic capillary chromatography. J Chromatogr B Biomed Sci Appl. 1999;721(1):127–34.

    Article  CAS  Google Scholar 

  11. Keski-Hynnilä H, Raanaa K, Taskinen J, Kostiainen R. Direct analysis of nitrocatechol-type glucuronides in urine by capillary electrophoresis–electrospray ionisation mass spectrometry and tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 2000;749(2):253–63.

    Article  Google Scholar 

  12. Abasq ML, Courtel P, Burgot G. Determination of entacapone by differential pulse polarography in pharmaceutical formulation. Anal Lett. 2008;41(1):56–65.

    Article  CAS  Google Scholar 

  13. Jain R, Yadav RK, Dwivedi A. Square-wave adsorptive stripping voltammetric behaviour of entacapone at HMDE and its determination in the presence of surfactants. Colloids Surf A. 2010;359(1):25–30.

    Article  CAS  Google Scholar 

  14. Rizk M, Attia AK, Elshahed MS, Farag AS. Validated voltammetric method for the determination of antiparkinsonism drug entacapone in bulk, pharmaceutical formulation and human plasma. J Electroanal Chem. 2015;743:112–9.

    Article  CAS  Google Scholar 

  15. Salama NN, Azab SM, Mohamed MA, Fekry AM. A novel methionine/palladium nanoparticle modified carbon paste electrode for simultaneous determination of three antiparkinson drugs. RSC Adv. 2015;5(19):14187–95.

    Article  CAS  Google Scholar 

  16. Gaisford S, Buanz AB. Pharmaceutical physical form characterisation with fast (>200 C min−1) DSC heating rates. J Therm Anal Calorim. 2011;106(1):221–6.

    Article  CAS  Google Scholar 

  17. Neto HS, Novák C, Matos J. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97(1):367–74.

    Article  Google Scholar 

  18. Salama NN, Mohammad MA, Fattah TA. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J Therm Anal Calorim. 2015;120(1):953–8.

    Article  CAS  Google Scholar 

  19. Mohamed MA, Attia AK. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2017;127(2):1751–6.

    Article  CAS  Google Scholar 

  20. Beyer H, Meini S, Tsiouvaras N, Piana M, Gasteiger H. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Phys Chem Chem Phys. 2013;15(26):11025–37.

    Article  CAS  Google Scholar 

  21. Brown ME, Glass BD. Decomposition of solids accompanied by melting—Bawn kinetics. Int J Pharm. 2003;254(2):255–61.

    Article  CAS  Google Scholar 

  22. Rodomonte A, Antoniella E, Bertocchi P, Gaudiano MC, Manna L, Bartolomei M. Different crystal morphologies arising from different preparation methods of a same polymorphic form may result in different properties of the final materials: the case of diclofenac sodium trihydrate. J Pharm Biomed Anal. 2008;48(2):477–81.

    Article  CAS  Google Scholar 

  23. Salvio Neto H, Matos JDR. Compatibility and decomposition kinetics studies of prednicarbate alone and associated with glyceryl stearate. J Therm Anal Calorim. 2011;103(1):393–9.

    Article  CAS  Google Scholar 

  24. Macêdo R, Gomes do Nascimento T, Soares Aragăo C, Barreto Gomes A. Application of thermal analysis in the characterization of anti-hypertensive drugs. J Therm Anal Calorim. 2000;59(3):657–61.

    Article  Google Scholar 

  25. O’Neil MJ. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. Whitehouse Station, NJ: Merck; 2006.

    Google Scholar 

  26. Marian E, Tiţa B, Jurca T, Fuliaş A, Vicaş L, Tiţa D. Thermal behaviour of erythromycin-active substance and tablets. J Therm Anal Calorim. 2013;111(2):1025–31.

    Article  CAS  Google Scholar 

  27. Tiţa D, Fuliaş A, Tiţa B. Thermal stability of ketoprofen. J Therm Anal Calorim. 2013;111(3):1979–85.

    Article  Google Scholar 

  28. Dickinson C, Heal G. A review of the ICTAC Kinetics Project, 2000: Part 1. Isothermal results. Thermochim Acta. 2009;494(1):1–14.

    Article  CAS  Google Scholar 

  29. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method versus Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117(40):10162–9.

    Article  CAS  Google Scholar 

  30. Burnham L, Dollimore D, Alexander KS. Kinetic study of the drug acetazolamide using thermogravimetry. Thermochim Acta. 2002;392:127–33.

    Article  Google Scholar 

  31. Felix FS, da Silva LC, Angnes L, Matos J. Thermal behavior study and decomposition kinetics of salbutamol under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2009;95(3):877–80.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  33. Cai J, Liu R. On evaluate of the integral methods for the determination of the activation energy. J Therm Anal Calorim. 2009;96(1):331–3.

    Article  CAS  Google Scholar 

  34. Chaves LL, Rolim LA, Gonçalves ML, Vieira AC, Alves LD, Soares MF, et al. Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. J Therm Anal Calorim. 2013;111(3):2179–86.

    Article  CAS  Google Scholar 

  35. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci, Part C: Polym Lett. 1969;7(1):41–6.

    CAS  Google Scholar 

  36. Friedman HL, editor. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. In: Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library; 1964.

  37. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  38. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  39. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  40. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  41. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  42. Li C-R, Tang TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325(1):43–6.

    Article  CAS  Google Scholar 

  43. Vyazovkin S. Computational aspects of kinetic analysis: Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta. 2000;355(1–2):155–63.

    Article  CAS  Google Scholar 

  44. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19(1):45–60.

    Article  CAS  Google Scholar 

  45. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  46. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state (comprehensive chemical kinetics), Chap. 2, vol. 22. 1st ed. Amsterdam: Elsevier; 1980.

    Google Scholar 

  47. Brown M. Thermal decomposition of ionic solids, vol. 86. 1st ed. Amsterdam: Elsevier Science; 1999.

    Google Scholar 

  48. Ferreira B, Araujo B, Sebastião R, Yoshida M, Mussel W, Fialho S, et al. Kinetic study of anti-HIV drugs by thermal decomposition analysis. J Therm Anal Calorim. 2017;127(1):577–85.

    Article  CAS  Google Scholar 

  49. Gai C, Dong Y, Zhang T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Biores Technol. 2013;127:298–305.

    Article  CAS  Google Scholar 

  50. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  51. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  52. Galwey AK. Magnitudes of Arrhenius parameters for decomposition reactions of solids. Thermochim Acta. 1994;242:259–64.

    Article  CAS  Google Scholar 

  53. Mahfouz RM, Al-Farhan KA, Hassen GY, Al-Wassil AI, Alshehri SM, Al-Wallan AA. Preparation and characterization of new In(III), Re(III), and Re(V) complexes with thenoyltrifluoroacetone and some bidentate heterocyclic ligands. Synth React Inorg Met-Org Chem. 2002;32(3):489–508.

    Article  CAS  Google Scholar 

  54. Sekerci M, Yakuphanoglu F. Thermal analysis study of some transition metal complexes by TG and DSC methods. J Therm Anal Calorim. 2004;75(1):189–95.

    Article  CAS  Google Scholar 

  55. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72(2):597–604.

    Article  CAS  Google Scholar 

  56. Vlase T, Jurca G, Doca N. Non-isothermal kinetics by decomposition of some catalyst precursors. Thermochim Acta. 2001;379(1):65–9.

    Article  CAS  Google Scholar 

  57. Fandaruff C, Araya-Sibaja A, Pereira R, Hoffmeister C, Rocha H, Silva M. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2014;115(3):2351–6.

    Article  CAS  Google Scholar 

  58. Krabbendam-LaHaye E, De Klerk W, Krämer R. The kinetic behaviour and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80(2):495–501.

    Article  CAS  Google Scholar 

  59. Shamsipur M, Pourmortazavi SM, Beigi AAM, Heydari R, Khatibi M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS PharmSciTech. 2013;14(1):287–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.A., Atty, S.A. & Banks, C.E. Thermal decomposition kinetics of the antiparkinson drug “entacapone” under isothermal and non-isothermal conditions. J Therm Anal Calorim 130, 2359–2367 (2017). https://doi.org/10.1007/s10973-017-6664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6664-y

Keywords

Navigation