Skip to main content
Log in

Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organic peroxides are widely used unstable compounds that have caused many serious industrial incidents. Self-accelerating decomposition temperature (SADT) is one of the most important parameters to describe the thermal instability hazards of organic peroxides. However, it is very difficult to obtain experimental data of SADT due to high cost, the time involved and safety issues of laboratory tests. Quantitative structure–property relationship (QSPR) models have been proposed as an effective tool to predict thermal stability of organic peroxides. In this work, a dataset including 50 SADTs of organic peroxides was built and their molecular descriptors were calculated at B3LYP/6-31G(d) level using Gaussian 09. Two novel predictive models were successfully developed by multiple linear regression (MLR) and support vector machine (SVM). Both models were validated to have an excellent goodness of fit, internal robustness and external predictive ability. The MLR model was a linear equation with the average absolute error of training set and test set being 9.78 and 9.91, while the SVM model was a nonlinear model with the two values being 4.33 and 5.75, respectively. The SVM model has higher accuracy and is much more effective than the MLR model. This research provides general guidelines and methodology of establishing QSPR models to predict SADTs for other organic peroxides and unstable hazardous chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang YW, Liao MS, Shu CM. Thermal hazards of a green antimicrobial peracetic acid combining DSC calorimeter with thermal analysis equations. J Therm Anal Calorim. 2015;119(3):2257–67.

    Article  CAS  Google Scholar 

  2. Chi JH, Wu SH, Shu CM. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications. J Hazard Mater. 2009;171(1–3):1145–9.

    Article  CAS  Google Scholar 

  3. Lee MH, Chen JR, Das M, Hsieh TF, Shu CM. Thermokinetic parameter evaluation by DSC and TAM III along with accountability of mass loss by TG from the thermal decomposition analyses of benzoyl peroxide. J Therm Anal Calorim. 2015;122(3):1143–50.

    Article  CAS  Google Scholar 

  4. Chen WT, Chen WC, You ML, Tsai YT, Shu CM. Evaluation of thermal decomposition phenomenon for 1,1-bis(tertbutylperoxy)-3,3,5-trimethylcyclohexane by DSC and VSP2. J Therm Anal Calorim. 2015;122(3):1125–33.

    Article  CAS  Google Scholar 

  5. Lu Y, Ng D, Miao L, Mannan MS. Key observations of cumene hydroperoxide concentration on runaway reaction parameters. Thermochim Acta. 2010;501(1–2):65–71.

    Article  CAS  Google Scholar 

  6. Liu SH, Hou HY, Chen JW, Weng SY, Lin YC, Shu CM. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 2013;566:226–32.

    Article  CAS  Google Scholar 

  7. Pan Y, Zhang Y, Jiang J, Ding L. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure–property relationship (QSPR) approach. J Loss Prev Proc. 2014;31:41–9.

    Article  CAS  Google Scholar 

  8. Foresman JB, Frisch AE. Exploring chemistry with electronic structure methods. 2nd ed. Gaussian Inc.: Pittsburgh, PA; 1996.

    Google Scholar 

  9. Wang Q, Zhang Y, Rogers WJ, Mannan MS. Molecular simulation studies on chemical reactivity of methylcyclopentadiene. J Hazard Mater. 2009;165(1–3):141–7.

    Article  CAS  Google Scholar 

  10. Ochterski JW. Thermochemistry in Gaussian. Gaussian Inc.; 2000. http://www.lct.jussieu.fr/manuels/Gaussian03/g_whitepap/thermo/thermo.pdf. Accessed 2 June 2000.

  11. Wang Q, Mannan MS. Prediction of thermochemical properties for gaseous ammonia oxide. J Chem Eng Data. 2010;55(11):5128–32.

    Article  CAS  Google Scholar 

  12. Sun J, Li Y, Hasegawa K. A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. J Loss Prev Proc. 2001;14(5):331–6.

    Article  Google Scholar 

  13. Bosch CM, Velo E, Recasens F. Safe storage temperature of peroxide initiators: prediction of self-accelerated decomposition temperature based on a runaway heuristics. Chem Eng Sci. 2001;56(4):1451–7.

    Article  CAS  Google Scholar 

  14. Yu Y, Hasegawa K. Derivation of the self-accelerating decomposition temperature for self-reactive substances using isothermal calorimetry. J Hazard Mater. 1996;45(2–3):193–205.

    Article  CAS  Google Scholar 

  15. Gao Y, Xue Y, Lü Z, Wang Z, Chen Q, Shi N, Sun F. Self-accelerating decomposition temperature and quantitative structure-property relationship of organic peroxides. Process Saf Environ Prot. 2015;94:322–8.

    Article  CAS  Google Scholar 

  16. Yang D, Koseki H, Hasegawa K. Predicting the self-accelerating decomposition temperature (SADT) of organic peroxides based on non-isothermal decomposition behavior. J Loss Prev Proc. 2003;16(5):411–6.

    Article  Google Scholar 

  17. Prana V, Rotureau P, Fayet G, Andréc D, Hub S, Vicot P, Rao L, Adamoa C. Prediction of the thermal decomposition of organic peroxides by validated QSPR models. J Hazard Mater. 2014;276:216–24.

    Article  CAS  Google Scholar 

  18. The PubChem Project. https://pubchem.ncbi.nlm.nih.gov/#opennewwindow.

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford; 2010.

  20. Reyes OJ, Patel SJ, Mannan MS. Quantitative structure property relationship studies for predicting dust explosibility characteristics (K st, P max) of organic chemical dusts. Ind Eng Chem Res. 2011;50(4):2373–9.

    Article  CAS  Google Scholar 

  21. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111(2):1033–7.

    Article  CAS  Google Scholar 

  22. Wang Q, Ng D, Mannan MS. Study on the reaction mechanism and kinetics of the thermal decomposition of nitroethane. Ind Eng Chem Res. 2009;48(18):8745–51.

    Article  CAS  Google Scholar 

  23. Lu Y, Ng D, Mannan MS. Prediction of the reactivity hazards for organic peroxides using the QSPR approach. Ind Eng Chem Res. 2011;50(3):1515–22.

    Article  CAS  Google Scholar 

  24. Wang Q, Rogers WJ, Mannan MS. Thermal risk assessment and rankings for reaction hazards in process safety. J Therm Anal Calorim. 2009;98:225–33.

    Article  CAS  Google Scholar 

  25. Vapnik V. The nature of statistical learning theory. 2nd ed. Berlin: Springer; 2013.

    Google Scholar 

  26. Vapnik VN, Vapnik V. Statistical learning theory. London: Wiley; 1998.

    Google Scholar 

  27. de Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha A. Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model. 2006;46(3):1245–54.

    Article  Google Scholar 

  28. Fatemi MH, Gharaghani S. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorgan Med Chem. 2007;15(24):7746–54.

    Article  CAS  Google Scholar 

  29. Fatemi MH, Gharaghani S, Mohammadkhani S, Rezaie Z. Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine. Electrochim Acta. 2008;53(12):4276–82.

    Article  CAS  Google Scholar 

  30. Niazi A, Jameh-Bozorghi S, Nori-Shargh D. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines. J Hazard Mater. 2008;151(2–3):603–9.

    Article  CAS  Google Scholar 

  31. Pan Y, Jiang J, Wang R, Cao H, Cui Y. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine. J Hazard Mater. 2009;168(2–3):962–9.

    Article  CAS  Google Scholar 

  32. Alexander G, Alexander T. Beware of q2! J Mol Graph Model. 2002;20(4):269–76.

    Article  Google Scholar 

  33. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27:1–27:27. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Download references

Acknowledgements

This research was financially supported by China Scholarship Council (CSC). The authors would like to thank the High Performance Computing Center at Oklahoma State University for software support and computing time. The authors also appreciate the support from the Dale F. Janes Endowed Professorship at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yi, H., Xu, K. et al. Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models. J Therm Anal Calorim 128, 399–406 (2017). https://doi.org/10.1007/s10973-016-5922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5922-8

Keywords

Navigation