Skip to main content
Log in

Influence of calcium on the thermal stabilization of bovine α-lactalbumin by selected polyols

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal stability of bovine α-lactalbumin in the presence of three different calcium concentrations in aqueous solutions of several concentrations of erythritol, xylitol, sorbitol, and inositol at pH 6.5 was evaluated by UV absorbance, fluorescence spectroscopy, and circular dichroism spectroscopy. At the selected conditions, the thermal denaturation process is reversible and is well described by a two-state model. Results show a higher stability for the holo form of the protein in the presence of calcium, followed by the holo- and the apo-lactalbumin, respectively. The stabilizing effect of the polyols increases with polyol concentration and it is higher for the apo-lactalbumin than holo-lactalbumin and is very small for the protein in the presence of a calcium excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Permyakov EA, Berliner LJ. α-Lactalbumin: structure and function. FEBS Lett. 2000;473:269–74.

    Article  CAS  Google Scholar 

  2. Chrysina ED, Brew K, Acharya KR. Crystal structures of apo- and holo-bovine α-lactalbumin at 2.2-Å resolution reveal an effect of calcium on inter-lobe interactions. J Biol Chem. 2000;257:37021–9.

    Article  Google Scholar 

  3. Kronman MJ, Andreotti RE. Inter- and intramolecular interactions of α-lactalbumin. I. The apparent heterogeneity at acid pH. Biochemistry. 1964;3:1145–51.

    Article  CAS  Google Scholar 

  4. Apenten RKO. A three-state heat-denaturation of bovine α-lactalbumin. Food Chem. 1995;52:131–3.

    Article  Google Scholar 

  5. Zhong H, Gilmanshin R, Callender R. An FTIR study of the complex melting behavior of α-lactalbumin. J Phys Chem B. 1999;103:3947–53.

    Article  CAS  Google Scholar 

  6. Griko YV, Freire E, Privalov PL. Energetic of the α-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry. 1994;33:1889–99.

    Article  CAS  Google Scholar 

  7. Apenten RKO. Thermodynamic parameters for 3-state thermal denaturation of human and bovine α-lactalbumin. Thermochim Acta. 1995;262:1–12.

    Article  CAS  Google Scholar 

  8. Veprintsev DB, Permyakov SE, Permyakov EA, Rogov VV, Cawthern KM, Berliner LJ. Cooperative thermal transitions of bovine an human apo-α-lactalbumins: evidence for a new intermediate state. FEBS Lett. 1997;412:625–8.

    Article  CAS  Google Scholar 

  9. Hendrix TM, Griko Y, Privalov P. Energetic of structural domains in α-lactalbumin. Protein Sci. 1996;5:923–31.

    Article  CAS  Google Scholar 

  10. Sekhar G, Prakash V. Interaction of selected cosolvents with bovine α-lactalbumin. Int J Biol Macromol. 2008;42:348.

    Article  CAS  Google Scholar 

  11. O’Connor TF, Debenedetti PG, Carbeck JD. Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory. Biophys Chem. 2007;127:51–63.

    Article  Google Scholar 

  12. France RM, Grossman SH. Acrylamide quenching of apo- and holo-α-lactalbumin in guanidine hydrochloride. Biochem Biophys Res Commun. 2000;269:709–12.

    Article  CAS  Google Scholar 

  13. Banerjee T, Kishore N. Insights into the energetics and mechanism underlying the interaction of tetraethylammonium bromide with proteins. J Chem Therm. 2007 (in press).

  14. Cawthern KM, Narayan M, Chaudhuri D, Permyakov EA, Berliner LJ. Interactions of α-lactalbumin with fatty acids and spin label analogs. J Biol Chem. 1997;272:30812–6.

    Article  CAS  Google Scholar 

  15. Rishi V, Anjum F, Ahmad F, Pfeil W. Role of non-compatible osmolytes in the stabilization of proteins during heat stress. Biochem J. 1998;329:137–43.

    CAS  Google Scholar 

  16. Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ. Interpreting the effects of small uncharged solutes on protein folding equilibria. Annu Rev Biophys Biomol Struct. 2001;30:271.

    Article  CAS  Google Scholar 

  17. Kaushik J, Bhat R. Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. J Phys Chem B. 1998;102:7058–66.

    Article  CAS  Google Scholar 

  18. Xie G, Timasheff SN. The thermodynamic mechanism of protein stabilization by trehalose. Biophys Chem. 1997;64:25–43.

    Article  CAS  Google Scholar 

  19. Haque I, Singh R, Moosavi-Movahedi AA, Ahmed F. Effect of polyol osmolytes on ΔGD, the Gibbs energy of stabilisation of proteins at different pH values. Biophys Chem. 2005;117:1–12.

    Article  CAS  Google Scholar 

  20. Wetlaufer DB. Osmometry and general characterization of α-lactalbumin. CR Trav Lab Carlsberg. 1961;32:125–38.

    CAS  Google Scholar 

  21. Cooper A. Thermodynamics of protein folding and stability. In: Allen G, editor. Protein: a comprehensive treatise, vol. 2. Stamford: JAI Press Inc.; 1999. p. 217–70.

  22. Romero CM, Albis A, Lozano JM, Sancho J. Thermodynamic study of the influence of polyols and glucose on the thermal stability of holo-bovine α-lactalbumin. J Therm Anal Calorim. 2009;98:165–71.

    Article  CAS  Google Scholar 

  23. Albis A, Lozano JM, Romero CM. Estabilización de la holo-α-lactoalbúmina en presencia de polioles. Rev Colomb Quím. 2009;38:209–19.

    CAS  Google Scholar 

  24. Hendrix T, Griko YV, Privalov PL. A calorimetric study of the influence of calcium on the stability of bovine α-lactalbumin. Biophys Chem. 2000;84:27–34.

    Article  CAS  Google Scholar 

  25. Xie G, Timasheff SN. Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein. Protein Sci. 1997;6:211–21.

    Article  CAS  Google Scholar 

  26. Wimmer R, Olsson M, Neves Petersen MT, Hatti-Kaul R, Petersen SB, Müller N. Towards a molecular level understanding of protein stabilization: the interaction between lysozyme and sorbitol. J Biotechnol. 1997;55:85–100.

    Article  CAS  Google Scholar 

  27. Tiwari A, Bhat R. Stabilization of yeast hexokinase A by polyol osmolytes: Correlation with the physicochemical properties of aqueous solutions. Biophys Chem. 2006;124:90–9.

    Article  CAS  Google Scholar 

  28. Santoro MM, Liu Y, Khan SMA, Hou L-X, Bolen DW. Increased thermal stability of proteins in the presence os naturally occurring osmolytes. Biochemistry. 1992;31:5278–83.

    Article  CAS  Google Scholar 

  29. Parsegian VA, Rand RP, Rau DC. Osmotic stress, crowding, preferential hydration, and binding: a comparación of perspectives. PNAS. 2000;97:3987–92.

    Article  CAS  Google Scholar 

  30. Timasheff SN. Thermodynamic binding and site occupancy in the light of the Schellman exchange concept. Biophys Chem. 2002;101–102:99–111.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad Nacional de Colombia, COLCIENCIAS and by grant BFU2007-61476/BMC (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Albis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albis, A., Lozano, J.M., Sancho, J. et al. Influence of calcium on the thermal stabilization of bovine α-lactalbumin by selected polyols. J Therm Anal Calorim 104, 37–44 (2011). https://doi.org/10.1007/s10973-010-1156-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1156-3

Keywords

Navigation