Skip to main content
Log in

Copolymerization of transition metal salen complexes and conversion into metal nanoparticles supported on hierarchically porous carbon monoliths: a one pot synthesis

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Described is the synthesis of metal (Ni, Cr, and Mn) doped macro/mesoporous carbon monoliths by co-polymerization of transition metal complexes with resorcinol/formaldehyde and subsequent pyrolysis. Two salen ligands were synthesized via reaction of ethylene diamine (EDA) and 1,6-diaminohexane (DAH) with 2,4-dihydroxybenzaldehyde to give 4,4′-((1E,1′E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(benzene-1,3-diol) (=E-salen) and 4,4′-((1E,1′E)-(hexane-1,6-diylbis(azanylylidene))bis(methanylylidene))bis(benzene-1,3-diol) (=D-salen). Their metal salen complexes were prepared. All the samples pyrolyzed at 500 °C had macro and mesopores with a specific surface area ranging from 250–500 m2/g. However, the surface area and porosity of the samples decreased dramatically for the metal containing samples pyrolyzed at 800 °C. This is suggested to result from incomplete co-polymerization of the metal salen complexes. The extent of graphitization determined from Raman increased with the pyrolysis temperature. The electrical conductivity was found to increase with the pyrolysis temperature, and followed the trend Ni > Mn > Cr. The M-E-salen containing samples had significantly lower conductivity than their D-salen counterparts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Świątkowski A (1999) Industrial carbon adsorbents. In: Dąbrowski A (ed) Adsorption and its applications in industry and environmental protection, vol. 120. Part A. Elsevier, New York, pp 69–94. http://dx.doi.org.libdata.lib.ua.edu/10.1016/S0167-2991(99)80549-7

  2. Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A (2012) Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J Environ Manage 102:148–164. https://doi.org/10.1016/j.jenvman.2012.02.021

    Article  Google Scholar 

  3. Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents for the removal of pollutants from the aqueous phase. Mater Res Bull 26(11):890–894. https://doi.org/10.1557/mrs2001.230

    Article  Google Scholar 

  4. Menéndez-Díaz JA, Martín-Gullón I (2006) Types of carbon adsorbents and their production. In: Bandosz TJ (ed) Activated carbon surfaces in environmental remediation, Vol 7. Interface Science and Technology, pp 1-47. https://doi.org/10.1016/S1573-4285(06)80010-4

  5. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280. https://doi.org/10.1039/c3ee43525c

    Article  Google Scholar 

  6. Rodriguez-Reinoso F (2005) Carbon as a catalyst support. In: Patrick JW (ed) Porosity in Carbons, Halsted Press, New York, NY, pp 253–290

    Google Scholar 

  7. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410. https://doi.org/10.1021/cs5008393

    Article  Google Scholar 

  8. Yao F, Pham DT, Lee YH (2015) Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem 8:2284–2311. https://doi.org/10.1002/cssc.201403490

    Article  Google Scholar 

  9. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  Google Scholar 

  10. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192. https://doi.org/10.1039/c0ee00558d

    Article  Google Scholar 

  11. Yang Y, Chiang K, Burke N (2011) Porous carbon-supported catalysts for energy and environmental applications: A short review. Catal Today 178(1):197–205. https://doi.org/10.1016/j.cattod.2011.08.028

    Article  Google Scholar 

  12. Xia Y, Yang Z, Mokaya R (2010) Templated nanoscale porous carbons. Nanoscale 2:639–659. https://doi.org/10.1039/b9nr00207c

    Article  Google Scholar 

  13. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667. https://doi.org/10.1039/c0ee00627k

    Article  Google Scholar 

  14. Chuenchom L, Kraehnert R, Smarsly BM (2012) Recent progress in soft-templating of porous carbon materials. Soft Matter 8:10801–10812. https://doi.org/10.1039/c2sm07448f

    Article  Google Scholar 

  15. Fang B, Kim JH, Kim M-S, Yu J-S (2013) Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Acc Chem Res 46(7):1397–1406. https://doi.org/10.1021/ar300253f

    Article  Google Scholar 

  16. Li X, Sun M, Rooke JC, Chen L, Su BL (2013) Synthesis and applications of hierarchically porous catalysts. Chin J Catal 34:22–47. https://doi.org/10.1016/S1872-2067(11)60507-X

    Article  Google Scholar 

  17. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592. https://doi.org/10.1039/C4EE01075B

    Article  Google Scholar 

  18. Hao G-P, Li W-C, Qian D, Lu A-H (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–857. https://doi.org/10.1002/adma.200903765

    Article  Google Scholar 

  19. Hao G-P, Li W-C, Qian D, Wang G-H, Zhang W-P, Zhang T, Wang A-Q, Schuth F, Bongard H-J, Lu A-H (2011) Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J Am Chem Soc 133:11378–11388. https://doi.org/10.1021/ja203857g

    Article  Google Scholar 

  20. Hao G-P, Li W-C, Wang S, Wang G-H, Qi L, Lu A-H (2011) Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon 49(12):3762–3772. https://doi.org/10.1016/j.carbon.2011.05.010

    Article  Google Scholar 

  21. Lipatov YS, Alekseeva TT (2007) Phase-separated interpenetrating polymer networks. Adv Polym Sci 208:1–227. https://doi.org/10.1007/12_2007_116

    Article  Google Scholar 

  22. Ignatova TD, Kosyanchuk LF, Todosiychuk TT, Nesterov AE (2011) Reaction-induced phase separation and structure formation in polymer blends. Composite Interf 18:185–236. https://doi.org/10.1163/092764411X567530

    Article  Google Scholar 

  23. van Dillen AJ, Terorde RJAM, Lensveld DJ, Geus JW, de Jong KP (2003) Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J Catal 216:257–264. https://doi.org/10.1016/S0021-9517(02)00130-6

    Article  Google Scholar 

  24. Marceau E, Carrier X, Che M (2009) Impregnation and drying. In: de Jong KP (ed) Synthesis of Solid Catalysts, Wiley-VCH, Weinheim, Germany, pp 59–82. https://doi.org/10.1002/9783527626854.ch4

  25. Regalbuto JR (2009) Electrostatic adsorption. In: de Jong KP (ed) Synthesis of Solid Catalysts, Wiley-VCH, Weinheim, Germany, pp 33–58. https://doi.org/10.1002/9783527626854.ch3

  26. Liu S-H, Lu R-F, Huang S-J, Lo A-Y, Chien S-H, Liu S-B (2006) Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons. Chem Comm 3435–3437. https://doi.org/10.1039/b607449a

  27. Gao P, Wang A, Wang X, Zhang T (2008) Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic–organic self-assembly. Chem Mater 20:1881–1888. https://doi.org/10.1021/cm702815e

    Article  Google Scholar 

  28. Wang X, Dai S (2009) A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption 15:138–144. https://doi.org/10.1007/s10450-009-9164-y

    Article  Google Scholar 

  29. Yao J, Li L, Song H, Liu C, Chen X (2009) Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites. Carbon 47:436–444. https://doi.org/10.1016/j.carbon.2008.10.016

    Article  Google Scholar 

  30. Zhai Y, Dou Y, Liu X, Tua B, Zhao D (2009) One-pot synthesis of magnetically separable ordered mesoporous carbon. J Mater Chem 19:3292–3300. https://doi.org/10.1039/b821945a

    Article  Google Scholar 

  31. Sun Z, Sun B, Qiao M, Wei J, Yue Q, Wang C, Deng Y, Kaliaguine S, Zhao D (2012) A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer−tropsch synthesis. J Am Chem Soc 134:17653–17660. https://doi.org/10.1021/ja306913x

    Article  Google Scholar 

  32. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23:2322–2328. https://doi.org/10.1002/adfm.201202764

    Article  Google Scholar 

  33. Kotbagi TV, Hakat Y, Bakker MG (2015) Novel one-pot synthesis of hierarchically porous Pd/C monoliths by a co-gelation method. MRS Commun 5:51–56. https://doi.org/10.1557/mrc.2015.7

    Article  Google Scholar 

  34. Kotbagi TV, Hakat Y, Bakker MG (2016) Facile one-pot synthesis and characterization of nickel supported on hierarchically porous carbon. Mater Res Bull 73:204–210. https://doi.org/10.1016/j.materresbull.2015.09.006

    Article  Google Scholar 

  35. Kotbagi TV, Gurav HR, Nagpure AS, Chilukuri SV, Bakker MG (2016) Robust and recyclable nitrogen doped hierarchically porous carbon supported Ni nanoparticles for the hydrogenation of furfural to furfuryl alcohol. RSC Adv 6:67662–67668. https://doi.org/10.1039/C6RA14078E

    Article  Google Scholar 

  36. Liu Y, Li D, Lin B, Sun Y, Zhang X, Yang H (2015) Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage. J Porous Mat 22:1417–1422. https://doi.org/10.1007/s10934-015-0021-y

    Article  Google Scholar 

  37. Oya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17:309–322

    Article  Google Scholar 

  38. Oya A, Otani S (1981) Influences of particle size of metal on catalytic graphitization of non-graphitizing. Carbon 19(5):391–400. https://doi.org/10.1016/0008-6223(81)90064-6

    Article  Google Scholar 

  39. Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373. https://doi.org/10.1021/la991080r

    Article  Google Scholar 

  40. Hao G-P, Han F, Guo D-C, Fan R-J, Xiong G, Li W-C, Lu A-H (2012) Monolithic carbons with tailored crystallinity and porous structure as lithium-ion anodes for fundamental understanding their rate performance and cycle stability. J Phys Chem C 116:10303–10311. https://doi.org/10.1021/jp2124229

    Article  Google Scholar 

  41. Sevilla M, Fuertes AB (2013) Fabrication of porous carbon monoliths with a graphitic framework. Carbon 56:155–156. https://doi.org/10.1016/j.carbon.2012.12.090

    Article  Google Scholar 

  42. Li J, Gu J, Li H, Liang Y, Hao Y, Sun X, Wang L (2010) Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Micropor Mesopor Mater 128:144–149. https://doi.org/10.1016/j.micromeso.2009.08.015

    Article  Google Scholar 

  43. Chi Y, Tu J, Wang M, Li X, Zhao Z (2014) One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol. J Coll Interf Sci 423:54–59. https://doi.org/10.1016/j.jcis.2014.02.029

    Article  Google Scholar 

  44. Ghimbeu CM, Meins J-ML, Zlotea C, Vidal L, Schrodj G, Latroche M, Vix-Guterl C (2014) Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy. Carbon 67:260–272. https://doi.org/10.1016/j.carbon.2013.09.089

    Article  Google Scholar 

  45. Stojmenović M, Momčilović M, Gavrilov N, Pašti IA, Mentus S, Jokić B, Babić B (2015) Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media. Electrochim Acta 153:130–139. https://doi.org/10.1016/j.electacta.2014.11.080

    Article  Google Scholar 

  46. Duan L, Fu R, Xiao Z, Zhao Q, Wang J-Q, Chen S, Wan Y (2015) Activation of aryl chlorides in water under phase-transfer agent-free and ligand-free suzuki coupling by heterogeneous palladium supported on hybrid mesoporous carbon. ACS Catal 5:575–586. https://doi.org/10.1021/cs501356h

    Article  Google Scholar 

  47. Fang Y, Huang X, Zeng Q, Wang L (2015) Metallic nanocrystallites-incorporated ordered mesoporous carbon as labels for a sensitive simultaneous multianalyte electrochemical immunoassay. Biosens Bioelectron 73:71–78. https://doi.org/10.1016/j.bios.2015.05.046

    Article  Google Scholar 

  48. Zhang Y, Xing L-G, Chen X-W, Wang J-H (2015) Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin. ACS Appl Mater Interf 7:5116–5123. https://doi.org/10.1021/am508836m

    Article  Google Scholar 

  49. Song L, Wang T, Xue H, Fan X, He J (2016) In-situ preparation of Pd incorporated ordered mesoporous carbon as efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 191:355–363. https://doi.org/10.1016/j.electacta.2016.01.083

    Article  Google Scholar 

  50. Zhang L, Xiong Z, Chen Y, Peng L, Yu B, Gao X, Zhang R, Zhang L, Zhang W (2016) Soft-template synthesis of hydrophilic metallic zirconia nanoparticle-incorporated ordered mesoporous carbon composite and its application in phosphopeptide enrichment. RSC Adv 6:30014–30020. https://doi.org/10.1039/c6ra00326e

    Article  Google Scholar 

  51. Cozzi PG (2004) Metal–salen schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421. https://doi.org/10.1039/B307853C

    Article  Google Scholar 

  52. Wezenberg SJ, Kleij AW (2008) Material applications for salen frameworks. Angew Chem Int Ed 47:2354–2364. https://doi.org/10.1002/anie.200702468

    Article  Google Scholar 

  53. Whiteoak CJ, Salassa G, Kleij AW (2012) Recent advances with π-conjugated salen systems. Chem Soc Rev 41:622–631. https://doi.org/10.1039/c1cs15170c

    Article  Google Scholar 

  54. Zhang G, Ni C, Liu L, Zhao G, Fina F, Irvine JTS (2015) Macro-mesoporous resorcinol–formaldehyde polymer resins as amorphous metal-free visible light photocatalysts. J Mater Chem A 3:15413–15419. https://doi.org/10.1039/C5TA03628C

    Article  Google Scholar 

  55. Liu G, Li X, Lee J-W, Popov BN (2011) A review of the development of nitrogen-modified carbon-based catalysts for oxygen reduction at USC. Catal Sci Technol 1:207–217. https://doi.org/10.1039/c0cy00053a

    Article  Google Scholar 

  56. van Wingerden B, van Veen JAR, Mensch CTJ (1988) An extended X-ray absorption fine structure study of heat-treated cobalt porphyrin catalysts supported on active carbon. J Chem Soc, Farad T I 84(1):65–74. https://doi.org/10.1039/F19888400065

    Article  Google Scholar 

  57. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. J Power Sources 183:34–42. https://doi.org/10.1016/j.jpowsour.2008.05.020

    Article  Google Scholar 

  58. Lee KT, Ji X, Rault M, Nazar LF (2009) Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines. Angew Chem Int Ed 48:5661–5665. https://doi.org/10.1002/anie.200806208

    Article  Google Scholar 

  59. Thambiliyagodage CJ, Hakat Y, Bakker MG (2016) One pot synthesis of carbon/Ni nanoparticle monolithic composites by nanocasting and their catalytic activity for 4-Nitrophenol reduction. Curr Catal 5:135–146. https://doi.org/10.2174/2211544705666160610093114

    Article  Google Scholar 

  60. Srinivasu P, Islam A, P. Singh S, Han L, Kantam ML, Bhargava SK (2012) Highly efficient nanoporous graphitic carbon with tunable textural properties for dye-sensitized solar cells. J Mater Chem 22:20866–20869. https://doi.org/10.1039/c2jm33498d

    Article  Google Scholar 

  61. Sails SR, Gardiner DJ, Bowden M, Savage J, Rodway D (1996) Monitoring the quality of diamond films using Raman spectra excited at 514.5nm and 633nm. Diamond Relat Mater 5:589–591

    Article  Google Scholar 

  62. Wada N, Gaczl PJ, Solin SA (1980) “Diamond-Like” 3-fold coordinated amorphous Carbon. J Non-Cryst Solid 35&36:543–548

    Article  Google Scholar 

  63. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  64. Pantea D, Darmstadt H, Kaliaguine S, Summchen L, Roy C (2001) Electrical conductivity of thermal carbon blacks influence of surface chemistry. Carbon 39:1147–1158

    Article  Google Scholar 

  65. Soukup L, Gregora I, Jastrabik L, Konakova A (1992) Raman spectra and electrical conductivity of glassy carbon. Mater Sci Eng B11:355–357

    Article  Google Scholar 

  66. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1131. https://doi.org/10.1063/1.1674108

    Article  Google Scholar 

  67. Grob B, Schmid J, Ivleva NP, Niessner R (2012) Conductivity for soot sensing: possibilities and limitations. Anal Chem 84:3586–3592. https://doi.org/10.1021/ac203152z

    Article  Google Scholar 

  68. Liu Y, Lin B, Li D, Zhang X, Sun Y, Yang H (2014) Magnetically-separable hierarchically porous carbon monoliths with partially graphitized structures as excellent adsorbents for dyes. J Porous Mat 21:933–938. https://doi.org/10.1007/s10934-014-9841-4

    Article  Google Scholar 

  69. Liu Y, Lin B, Li D, Zhang X, Sun Y, Yang H (2014) Hierarchically porous graphitic carbon monoliths containing nickel nanoparticles as magnetically separable adsorbents for dyes. J Appl Poly Sci 132:41322. https://doi.org/10.1002/APP.41322. (41321 of 41327)

    Google Scholar 

  70. Liu Y, Lin B, Li D, Xu T, Zhang X, Sun Y, Yang H (2014) Synthesis and supercapacitive performance of hierarchically porous graphitic carbon monoliths containing cobalt nanoparticles. Micropor Mesopor Mater 200:245–252. https://doi.org/10.1016/j.micromeso.2014.08.058

    Article  Google Scholar 

  71. Kim J, Lee J, Choi Y, Jo C (2014) Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon 75:95–103. https://doi.org/10.1016/j.carbon.2014.03.039

    Article  Google Scholar 

  72. Kicinski W, Bystrzejewski M, Rummeli MH, Gemming T (2014) Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts. Bull Mater Sci 37(1):141–150

    Article  Google Scholar 

  73. Yang Z, Mokaya R (2008) Probing the effect of the carbonisation process on the textural properties and morphology of mesoporous carbons. Micropor Mesopor Mater 113:378–384. https://doi.org/10.1016/j.micromeso.2007.11.035

    Article  Google Scholar 

  74. Chanda M, Rempel GL (1989) Selective sorption of uranyl and ferric ions on phenolic-type resins of glyoxyl-bis-2-hydroxyanil and salicylaldehyde-ehtylenenediamine. Reactive Polymers 11:71–82

    Article  Google Scholar 

Download references

Acknowledgements

The technical assistance of Dr. Ken Belmore in the collection and interpretation of the NMR spectra is greatly appreciated. The authors acknowledge the Central Analytical Facility (CAF) at the University of Alabama for support and technical assistance. A seed grant from the CAF at The University of Alabama is acknowledged, the required cost match for which was provided by the Bakker Research Gift fund. TVK acknowledges support from the Research Simulation program of the Office of Research at The University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Bakker.

Ethics declarations

Conflict of interests

A number of the authors (M.G.B., T.V.K., K.H.S.) have a potential conflict of interest. They are co-inventors of work described in this and prior papers for which the University of Alabama has applied for multiple patents. A granted patent is licensed to a company that M.G.B. and T.V.K. have an ownership interest in.

Additional information

Online resources

This paper is accompanied by Online Resources consisting of: NMR spectra of E-salen and D-Salen ligands, and Ni-E-Salen complex. Tables of fits to XRD, Raman, and Electrical Conductivity and correlations to mesopore volumes. The original Raman spectra and X-Ray diffractograms.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotbagi, T.V., Shaughnessy, K.H., LeDoux, C. et al. Copolymerization of transition metal salen complexes and conversion into metal nanoparticles supported on hierarchically porous carbon monoliths: a one pot synthesis. J Sol-Gel Sci Technol 84, 258–273 (2017). https://doi.org/10.1007/s10971-017-4510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4510-0

Keywords

Navigation