Skip to main content
Log in

Water-based wet chemical synthesis of (doped) ZnO nanostructures

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Looking at its vast range of applications, nanostructured ZnO can be considered as a key technological material. Simple and ecological production techniques for this and other nanostructured materials can boost the detection of their unusual properties. In this context water-based wet chemical synthesis routes for nanostructured ZnO are explored in this study. The advantages and disadvantages of controlled double-jet precipitation, microemulsion preparation, hydrothermal synthesis and an aqueous solution-gel route are described for the formation of (doped) ZnO nanoparticles. The influence of the synthesis parameters on the particle size, size distribution and degree of agglomeration of the particles is reported. Thin films are prepared by chemical solution deposition from aqueous solution. The heat treatment profile and the precursor composition are seen to largely control the density, the grain size and the degree of preferential c-axis orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Boyle, K. Govender, and P. O’Brien, Thin Solid Films 431432, 483–487 (2003).

    Article  CAS  Google Scholar 

  2. M. Kursawe, R. Anselmann, V. Hilarius, and G. Pfaff, J. Sol-Gel Sci. Techn. 33, 71–74 (2005).

    Article  CAS  Google Scholar 

  3. D. Chen, X. Jiao, and G. Cheng, Solid Sate Commun. 113, 363–366 (2000).

    Article  Google Scholar 

  4. H.Y. Xu, H. Wang, Y.C. Zhang, W.L. He, M.K. Zhu, B. Wang, and H. Yan, Ceram. Internat. 30, 93–97 (2004).

    Article  CAS  Google Scholar 

  5. S. Music, D. Dragcevic, M. Maljkovic, and S. Popovic, Mat. Chem. Phys. 77, 521–530 (2002).

    Article  Google Scholar 

  6. L. Wang and M. Muhammed, J. Mater. Chem. 9, 2871–2878 (1999).

    Article  CAS  Google Scholar 

  7. Q. Zhong and E. Matijevic, J. Mater. Chem. 6, 443–447 (1996).

    Article  CAS  Google Scholar 

  8. M. Singhal, V. Chhabra, P. Kang, and D.O. Shah, Mat. Res. Bull. 32, 239–247 (1997).

    Article  CAS  Google Scholar 

  9. H. Van den Rul, D. Mondelaers, G. Vanhoyland, J. Mullens, and L.C. Van Poucke, Ceramic Engineering and Science Proceedings 24:(3), 93–98 (2003).

    Article  Google Scholar 

  10. J. Zarzycki, J. Sol-Gel Sci. & Techn. 8, 17–22 (1997).

    CAS  Google Scholar 

  11. M.K. Van Bael, E. Knaepen, A. Kareiva, I. Schildermans, R. Nouwen, J. D’Haen, M. D’Olieslaeger, D. Franco, C. Quaeyhaegens, D. Franco, J. Yperman, J. Mullens, and L.C. Van Poucke, Supercond. Sci. Technol. 11, 82 (1998).

    Article  CAS  Google Scholar 

  12. A. Hardy, G. Vanhoyland, E. Geuzens, M.K. Van Bael, J. Mullens, L.C. Van Poucke, and J. D’Haen, J. Sol-Gel Sci. & Technol. 33, 283–298 (2005).

    Article  CAS  Google Scholar 

  13. D. Nelis, K. Van Werde, D. Mondelaers, G. Vanhoyland, H. Van den Rul, M.K. Van Bael, J. Mullens, and L.C. Van Poucke, J. Sol-Gel Sci. & Techn. 26, 1125 (2003).

    Article  CAS  Google Scholar 

  14. E. Geuzens, G. Vanhoyland, J. D’Haen, M.K. Van Bael, H. Van den Rul, J. Mullens, L.C. Van Poucke, Key Engineering Materials 264–268, 343 (2004).

    Google Scholar 

  15. D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M.K. Van Bael, J. Mullens, and L.C. Van Poucke, Mat. Res. Bull. 37, 901–914 (2002).

    Article  CAS  Google Scholar 

  16. T. Morita, Y. Wagatsuma, Y. Cho, H. Morioka, H. Funakubo, and N. Setter, Appl. Phys. Lett. 84, 5094 (2004).

    Article  CAS  Google Scholar 

  17. M.K. Van Bael, D. Nelis, A. Hardy, D. Mondelaers, K. Van Werde, J. D’Haen, G. Vanhoyland, H. Van den Rul, J. Mullens, L.C. Van Poucke, F. Frederix, and D.J. Wouters, Integrated ferroelectrics 45, 113 (2002).

    Article  CAS  Google Scholar 

  18. D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M.K. Van Bael, J. Mullens, and L.C. Van Poucke, J. Sol-Gel Sci. Techn. 26, 523–526 (2003).

    Article  CAS  Google Scholar 

  19. D. Mondelaers, D. Nelis, K. Van Werde, G. Vanhoyland, J. D’Haen, M.K. Van Bael, H. Van den Rul, J. Mullens, and L.C. Van Poucke, submitted.

  20. D. Mondelaers, De synthese en karakterisering van ZnO nanopoeders en dunne films bereid vanuit waterige oplossing, PhD thesis, Diepenbeek, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Van den Rul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Rul, H., Mondelaers, D., Van Bael, M.K. et al. Water-based wet chemical synthesis of (doped) ZnO nanostructures. J Sol-Gel Sci Technol 39, 41–47 (2006). https://doi.org/10.1007/s10971-006-6322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-6322-5

Keywords

Navigation