Skip to main content
Log in

Structure- and sequence-based function prediction for non-homologous proteins

  • Published:
Journal of Structural and Functional Genomics

Abstract

The structural genomics projects have been accumulating an increasing number of protein structures, many of which remain functionally unknown. In parallel effort to experimental methods, computational methods are expected to make a significant contribution for functional elucidation of such proteins. However, conventional computational methods that transfer functions from homologous proteins do not help much for these uncharacterized protein structures because they do not have apparent structural or sequence similarity with the known proteins. Here, we briefly review two avenues of computational function prediction methods, i.e. structure-based methods and sequence-based methods. The focus is on our recent developments of local structure-based and sequence-based methods, which can effectively extract function information from distantly related proteins. Two structure-based methods, Pocket-Surfer and Patch-Surfer, identify similar known ligand binding sites for pocket regions in a query protein without using global protein fold similarity information. Two sequence-based methods, protein function prediction and extended similarity group, make use of weakly similar sequences that are conventionally discarded in homology based function annotation. Combined together with experimental methods we hope that computational methods will make leading contribution in functional elucidation of the protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PDB:

Protein Data Bank

3DZD:

3 Dimensional Zernike descriptor

ATP:

Adenosine triphosphate

HEM:

Heme

NAD:

Nicotinamide adenine dinucleotide

FAD:

Flavin adenine dinucleotide

BTN:

Biotin

F6P:

Fructose 6-phosphate

GUN:

Guanine

PLM:

Palmitic acid

RTL:

Retinol

AUC:

Area under the curve

ROC:

Receiver operator characteristic

EF:

Enrichment factor

GO:

Gene ontology

PFP:

Protein function prediction

ESG:

Extended similarity group

AFP-SIG:

Automatic Function Prediction Special Interest Group

ISMB:

Intelligent System in Molecular Biology

CASP:

Critical Assessment of Techniques for Protein Structure Prediction

References

  1. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351

    Article  PubMed  CAS  Google Scholar 

  2. Norvell JC, Berg JM (2007) Update on the protein structure initiative. Structure 15:1519–1522

    Article  PubMed  CAS  Google Scholar 

  3. Terwilliger TC, Stuart D, Yokoyama S (2009) Lessons from structural genomics. Annu Rev Biophys 38:371–383

    Article  PubMed  CAS  Google Scholar 

  4. Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Progress of structural genomics initiatives: an analysis of solved target structures. J Mol Biol 348:1235–1260

    Article  PubMed  CAS  Google Scholar 

  5. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  6. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The protein data bank and structural genomics. Nucleic Acids Res 31:489–491

    Article  PubMed  CAS  Google Scholar 

  7. Ellrott K, Zmasek CM, Weekes D, Sri KS, Bakolitsa C, Godzik A, Wooley J (2011) TOPSAN: a dynamic web database for structural genomics. Nucleic Acids Res 39:D494–D496

    Article  PubMed  Google Scholar 

  8. Shin DH, Hou J, Chandonia JM, Das D, Choi IG, Kim R, Kim SH (2007) Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center. J Struct Funct Genomics 8:99–105

    Article  PubMed  CAS  Google Scholar 

  9. Teplyakov A, Pullalarevu S, Obmolova G, Doseeva V, Galkin A, Herzberg O, Dauter M, Dauter Z, Gilliland GL (2004) Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function. BMC Struct Biol 4:5

    Article  PubMed  Google Scholar 

  10. Teplyakov A, Obmolova G, Sarikaya E, Pullalarevu S, Krajewski W, Galkin A, Howard AJ, Herzberg O, Gilliland GL (2004) Crystal structure of the YgfZ protein from Escherichia coli suggests a folate-dependent regulatory role in one-carbon metabolism. J Bacteriol 186:7134–7140

    Article  PubMed  CAS  Google Scholar 

  11. Li De La Sierra-Gallay I, Collinet B, Graille M, Quevillon-Cheruel S, Liger D, Minard P, Blondeau K, Henckes G, Aufrere R, Leulliot N, Zhou CZ, Sorel I, Ferrer JL, Poupon A, Janin J, van Tilbeurgh H (2004) Crystal structure of the YGR205w protein from Saccharomyces cerevisiae: close structural resemblance to E. coli pantothenate kinase. Proteins 54:776–783

    Article  PubMed  CAS  Google Scholar 

  12. Graille M, Quevillon-Cheruel S, Leulliot N, Zhou CZ, Gallay ILD, Jacquamet L, Ferrer JL, Liger D, Poupon A, Janin J, van Tilbeurgh H (2004) Crystal structure of the YDR533c S. cerevisiae protein, a class II member of the Hsp31 family. Structure 12:839–847

    Article  PubMed  CAS  Google Scholar 

  13. Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh T (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897

    Article  PubMed  CAS  Google Scholar 

  14. Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evdokimova E, Doherty-Kirby A, Lajoie GA, Thornton JM, Arrowsmith CH, Savchenko A, Joachimiak A, Edwards AM (2003) Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J Biol Chem 278:26039–26045

    Article  PubMed  CAS  Google Scholar 

  15. Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF (2005) Enzyme genomics: application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29:263–279

    PubMed  CAS  Google Scholar 

  16. Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8:242–248

    Article  PubMed  CAS  Google Scholar 

  17. Roberts RJ (2011) COMBREX: COMputational BRidge to EXperiments. Biochem Soc Trans 39:581–583

    Article  PubMed  CAS  Google Scholar 

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  19. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  20. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  21. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  Google Scholar 

  22. Hawkins T, Kihara D (2007) Function prediction of uncharacterized proteins. J Bioinform Comput Biol 5:1–30

    Article  PubMed  CAS  Google Scholar 

  23. Hawkins T, Chitale M, Kihara D (2008) New paradigm in protein function prediction for large scale omics analysis. Mol Biosyst 4:223–231

    Article  PubMed  CAS  Google Scholar 

  24. Kihara D (2011) Protein function prediction for omics era. Springer, London

    Book  Google Scholar 

  25. Gherardini PF, Helmer-Citterich M (2008) Structure-based function prediction: approaches and applications. Brief Funct Genomic Proteomic 7:291–302

    Article  PubMed  CAS  Google Scholar 

  26. Martin AC, Orengo CA, Hutchinson EG, Jones S, Karmirantzou M, Laskowski RA, Mitchell JB, Taroni C, Thornton JM (1998) Protein folds and functions. Structure 6:875–884

    Article  PubMed  CAS  Google Scholar 

  27. Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA (2000) From structure to function: approaches and limitations. Nat Struct Biol 7(Suppl):991–994

    Article  PubMed  CAS  Google Scholar 

  28. Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11:739–747

    Article  PubMed  CAS  Google Scholar 

  29. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123–138

    Article  PubMed  CAS  Google Scholar 

  30. Orengo CA, Taylor WR (1996) SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol 266:617–635

    Article  PubMed  CAS  Google Scholar 

  31. Thompson KE, Wang Y, Madej T, Bryant SH (2009) Improving protein structure similarity searches using domain boundaries based on conserved sequence information. BMC Struct Biol 9:33

    Article  PubMed  Google Scholar 

  32. Mizuguchi K, Go N (1995) Comparison of spatial arrangements of secondary structural elements in proteins. Protein Eng 8:353–362

    Article  PubMed  CAS  Google Scholar 

  33. Kihara D, Sael L, Chikhi R, Esquivel-Rodriguez J (2011) Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr Protein Pept Sci 12:520–530

    Article  PubMed  CAS  Google Scholar 

  34. La D, Esquivel-Rodriguez J, Venkatraman V, Li B, Sael L, Ueng S, Ahrendt S, Kihara D (2009) 3D-SURFER: software for high-throughput protein surface comparison and analysis. Bioinformatics 25:2843–2844

    Article  PubMed  CAS  Google Scholar 

  35. Sael L, Li B, La D, Fang Y, Ramani K, Rustamov R, Kihara D (2008) Fast protein tertiary structure retrieval based on global surface shape similarity. Proteins 72:1259–1273

    Article  PubMed  CAS  Google Scholar 

  36. Sael L, Kihara D (2009) Protein surface representation and comparison: new approaches in structural proteomics. In: Chen J, Lonardi S (eds) Biological data mining. Chapman & Hall/CRC Press, Boca Raton, pp 89–109

    Google Scholar 

  37. Venkatraman V, Sael L, Kihara D (2009) Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors. Cell Biochem Biophys 54:23–32

    Article  PubMed  CAS  Google Scholar 

  38. Ritchie DW, Graham J (1999) Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. J Comp Chem 20:383–395

    Article  CAS  Google Scholar 

  39. Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and domain superfolds. Nature 372:631–634

    Article  PubMed  CAS  Google Scholar 

  40. Porter CT, Bartlett GJ, Thornton JM (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32:D129–D133

    Article  PubMed  CAS  Google Scholar 

  41. Arakaki AK, Zhang Y, Skolnick J (2004) Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics 20:1087–1096

    Article  PubMed  CAS  Google Scholar 

  42. Artymiuk PJ, Poirrette AR, Grindley HM, Rice DW, Willett P (1994) A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structures. J Mol Biol 243:327–344

    Article  PubMed  CAS  Google Scholar 

  43. Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J Mol Biol 285:1887–1897

    Article  PubMed  CAS  Google Scholar 

  44. Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M (2004) SURFACE: a database of protein surface regions for functional annotation. Nucleic Acids Res 32:D240–D244

    Article  PubMed  CAS  Google Scholar 

  45. Redfern OC, Dessailly BH, Dallman TJ, Sillitoe I, Orengo CA (2009) FLORA: a novel method to predict protein function from structure in diverse superfamilies. PLoS Comput Biol 5:e1000485

    Article  PubMed  Google Scholar 

  46. Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323:387–406

    Article  PubMed  CAS  Google Scholar 

  47. Gold ND, Jackson RM (2006) Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships. J Mol Biol 355:1112–1124

    Article  PubMed  CAS  Google Scholar 

  48. Kinoshita K, Nakamura H (2005) Identification of the ligand binding sites on the molecular surface of proteins. Protein Sci 14:711–718

    Article  PubMed  CAS  Google Scholar 

  49. Morris RJ, Najmanovich RJ, Kahraman A, Thornton JM (2005) Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. Bioinformatics 21:2347–2355

    Article  PubMed  CAS  Google Scholar 

  50. Binkowski TA, Adamian L, Liang J (2003) Inferring functional relationships of proteins from local sequence and spatial surface patterns. J Mol Biol 332:505–526

    Article  PubMed  CAS  Google Scholar 

  51. Binkowski TA, Freeman P, Liang J (2004) pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Res 32:W555–W558

    Article  PubMed  CAS  Google Scholar 

  52. Binkowski TA, Joachimiak A (2008) Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites. BMC Struct Biol 8:45

    Article  PubMed  Google Scholar 

  53. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93

    Article  PubMed  CAS  Google Scholar 

  54. Pal D, Eisenberg D (2005) Inference of protein function from protein structure. Structure (Camb) 13:121–130

    Article  CAS  Google Scholar 

  55. Chikhi R, Sael L, Kihara D (2010) Real-time ligand binding pocket database search using local surface descriptors. Proteins 78:2007–2028

    Article  PubMed  CAS  Google Scholar 

  56. Sael L, Kihara D (2011) Binding ligand prediction for proteins using partial matching of local surface patches. Int J Mol Sci 11:5009–5026

    Article  Google Scholar 

  57. Sael L, Kihara D (2012) Detecting local ligand-binding site similarity in non-homologous proteins by surface patch comparison. Proteins (in press)

  58. Novotni M, Klein R (2003) 3D Zernike descriptors for content based shape retrieval. In: ACM symposium on solid and physical modeling, proceedings of the eighth ACM symposium on solid modeling and applications pp 216–225

  59. Canterakis N (1999) 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In: Proceedings of 11th scandinavian conference on image analysis, pp 85–93

  60. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  61. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2007) Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71:670–683

    Article  Google Scholar 

  62. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed  Google Scholar 

  63. Demange G, Gale D, Stomayor M (1986) Multi-item auctions. J Polit Econ 94:863–872

    Article  Google Scholar 

  64. Kahraman A, Morris RJ, Laskowski RA, Favia AD, Thornton JM (2010) On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins. Proteins 78:1120–1136

    Google Scholar 

  65. Gribskov M, Robinson NL (1996) Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput Chem 20:25–33

    Article  PubMed  CAS  Google Scholar 

  66. Sael L, Kihara D (2012) Constructing patch-based ligand-binding pocket database for predicting function of proteins. BMC Bioinform (in press)

  67. Wallach I, Lilien R (2009) The protein-small-molecule database, a non-redundant structural resource for the analysis of protein-ligand binding. Bioinformatics 25:615–620

    Article  PubMed  CAS  Google Scholar 

  68. Bender A, Glen RC (2005) A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication. J Chem Inf Model 45:1369–1375

    Article  PubMed  CAS  Google Scholar 

  69. Venkatraman V, Chakravarthy PR, Kihara D (2009) Application of 3D Zernike descriptors to shape-based ligand similarity searching. J Cheminform 1:19

    Article  PubMed  Google Scholar 

  70. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  PubMed  CAS  Google Scholar 

  71. Hulo N, Bairoch A, Bulliard V, Cerutti L, De CE, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic Acids Res 34:D227–D230

    Article  PubMed  CAS  Google Scholar 

  72. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33:D201–D205

    Article  PubMed  CAS  Google Scholar 

  73. Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res 33:D212–D215

    Article  PubMed  CAS  Google Scholar 

  74. Chitale M, Kihara D (2011) Computational protein function prediction: framework and challenges. In: Kihara D (ed) Protein function prediction for omis era. Springer, London, pp 1–17

    Chapter  Google Scholar 

  75. John B, Sali A (2004) Detection of homologous proteins by an intermediate sequence search. Protein Sci 13:54–62

    Article  PubMed  CAS  Google Scholar 

  76. Salamov AA, Suwa M, Orengo CA, Swindells MB (1999) Combining sensitive database searches with multiple intermediates to detect distant homologues. Protein Eng 12:95–100

    Article  PubMed  CAS  Google Scholar 

  77. Park J, Teichmann SA, Hubbard T, Chothia C (1997) Intermediate sequences increase the detection of homology between sequences. J Mol Biol 273:349–354

    Article  PubMed  CAS  Google Scholar 

  78. Hawkins T, Luban S, Kihara D (2006) Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Sci 15:1550–1556

    Article  PubMed  CAS  Google Scholar 

  79. Hawkins T, Chitale M, Luban S, Kihara D (2009) PFP: automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins 74:566–582

    Article  PubMed  CAS  Google Scholar 

  80. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Article  PubMed  CAS  Google Scholar 

  81. Martin DM, Berriman M, Barton GJ (2004) GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinform 5:178

    Article  Google Scholar 

  82. Khan S, Situ G, Decker K, Schmidt CJ (2003) GoFigure: automated gene ontology annotation. Bioinformatics 19:2484–2485

    Article  PubMed  CAS  Google Scholar 

  83. Zehetner G (2003) OntoBlast function: from sequence similarities directly to potential functional annotations by ontology terms. Nucleic Acids Res 31:3799–3803

    Article  PubMed  CAS  Google Scholar 

  84. Hawkins T, Chitale M, Kihara D (2010) Functional enrichment analyses and construction of functional similarity networks with high confidence function prediction by PFP. BMC Bioinform 11:265

    Article  Google Scholar 

  85. Si L, Yu D, Kihara D, Yi F (2008) Combining sequence similarity scores and textual information for gene function annotation in the literature. Inf Retr 11:389–404

    Article  Google Scholar 

  86. Chitale M, Hawkins T, Park C, Kihara D (2009) ESG: extended similarity group method for automated protein function prediction. Bioinformatics 25:1739–1745

    Article  PubMed  CAS  Google Scholar 

  87. Wass MN, Sternberg MJ (2008) ConFunc–functional annotation in the twilight zone. Bioinformatics 24:798–806

    Article  PubMed  CAS  Google Scholar 

  88. Engelhardt BE, Jordan MI, Muratore KE, Brenner SE (2005) Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput Biol 1:e45

    Article  PubMed  Google Scholar 

  89. Krishnamurthy N, Brown D, Sjolander K (2007) FlowerPower: clustering proteins into domain architecture classes for phylogenomic inference of protein function. BMC Evol Biol 7(Suppl 1):S12

    Article  PubMed  Google Scholar 

  90. Friedberg I, Harder T, Godzik A (2006) JAFA: a protein function annotation meta-server. Nucleic Acids Res 34:W379–W381

    Article  PubMed  CAS  Google Scholar 

  91. Chitale M, Hawkins T, Kihara D (2009) Automated prediction of protein function from sequence. In: Bujnicki J (ed) Prediction of protein structure, functions, and interactions. Wiley, London, pp 63–86

    Google Scholar 

  92. Uniprot Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148

    Article  Google Scholar 

  93. Friedberg I, Jambon M, Godzik A (2006) New avenues in protein function prediction. Protein Sci 15:1527–1529

    Article  PubMed  CAS  Google Scholar 

  94. Lopez G, Rojas A, Tress M, Valencia A (2007) Assessment of predictions submitted for the CASP7 function prediction category. Proteins 69:165–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Institute of General Medical Sciences of the National Institutes of Health (R01GM075004, R01GM097528), the National Science Foundation (DMS0800568, EF0850009, IIS0915801) and Showalter Trust. MC is supported by Bilsland Dissertation Fellowship from College of Science, Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kihara.

Additional information

Lee Sael and Meghana Chitale contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sael, L., Chitale, M. & Kihara, D. Structure- and sequence-based function prediction for non-homologous proteins. J Struct Funct Genomics 13, 111–123 (2012). https://doi.org/10.1007/s10969-012-9126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-012-9126-6

Keywords

Navigation