Skip to main content

Advertisement

Log in

Solution NMR structure of MED25(391–543) comprising the activator-interacting domain (ACID) of human mediator subunit 25

  • Published:
Journal of Structural and Functional Genomics

Abstract

The solution NMR structure of protein MED25(391–543), comprising the activator interacting domain (ACID) of subunit 25 of the human mediator, is presented along with the measurement of polypeptide backbone heteronuclear 15N-{1H} NOEs to identify fast internal motional modes. This domain interacts with the acidic transactivation domains of Herpes simplex type 1 (HSV-1) protein VP16 and the Varicella-zoster virus (VZV) major transactivator protein IE62, which initiate transcription of viral genes. The structure is similar to the β-barrel domains of the human protein Ku and the SPOC domain of human protein SHARP, and provides a starting point to understand the structural biology of initiation of HSV-1 and VZV gene activation. Homology models built for the two ACID domains of the prostate tumor overexpressed (PTOV1) protein using the structure of MED25(391–543) as a template suggest that differential biological activities of the ACID domains in MED25 and PTOV1 arise from modulation of quite similar protein–protein interactions by variable residues grouped around highly conserved charged surface areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

ACID:

Activator-interacting domain

CBP:

CREB-binding protein

HDAC:

Histone deacetylase complex

HSV-1:

Herpes simplex virus type 1

NESG:

Northeast Structural Genomics Consortium

MED25:

Subunit 25 of the human mediator complex

NOE:

Nuclear Overhauser effect

PDB:

Protein Data Bank

PTOV:

Prostate tumor overexpressed

RMSD:

Root mean square deviation

SHARP:

SMRT/HDAC1-associated repressor protein

SPOC:

Spen paralog and ortholog C-terminal domain

TAD:

Transactivation domain

VBD:

VP16-binding domain

VZV:

Varicella-zoster virus

References

  1. Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA-polymerase-II. Cell 77:599–608

    Article  PubMed  CAS  Google Scholar 

  2. Malik S, Roeder RG (2005) Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem Sci 30:256–263

    Article  PubMed  CAS  Google Scholar 

  3. Casamassimi A, Napoli C (2007) Mediator complexes and eukaryotic transcription regulation: an overview. Biochimie 89:1439–1446

    Article  PubMed  CAS  Google Scholar 

  4. Conaway RC, Sato S, Tomomori-Sato C, Yao TT, Conaway JW (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30:250–255

    Article  PubMed  CAS  Google Scholar 

  5. Bourbon HM, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FC, Jaehning JA, Kim YJ, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD (2004) A unified nomenclature for protein subunits of Mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14:553–557

    Article  PubMed  CAS  Google Scholar 

  6. Mittler G, Stuhler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M (2003) A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J 22:6494–6504

    Article  PubMed  CAS  Google Scholar 

  7. Yang FJ, DeBeaumont R, Zhou S, Naar AM (2004) The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci USA 101:2339–2344

    Article  PubMed  CAS  Google Scholar 

  8. Yang M, Hay J, Ruyechan WT (2008) Varicella-zoster virus IE62 protein utilizes the human mediator complex in promoter activation. J Virol 82:12154–12163

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto S, Eletsky A, Szyperski T, Hay J, Ruyechan WT (2009) Analysis of the varicella-zoster virus IE62N-terminal acidic transactivating domain and its interaction with the human mediator complex. J Virol 83:6300–6305

    Article  PubMed  CAS  Google Scholar 

  10. Taatjes DJ (2010) The human mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci 35:315–322

    Article  PubMed  CAS  Google Scholar 

  11. Perera LP, Mosca JD, Ruyechan WT, Hayward GS, Straus SE, Hay J (1993) A major transactivator of varicella-zoster virus, the immediate-early protein IE62, contains a potent N-terminal activation domain. J Virol 67:4474–4483

    PubMed  CAS  Google Scholar 

  12. Jonker HRA, Wechselberger RW, Boelens R, Folkers GE, Kaptein R (2005) Structural properties of the promiscuous VP16 activation domain. Biochemistry 44:827–839

    Article  PubMed  CAS  Google Scholar 

  13. Lee HK, Park UH, Kim EJ, Um SJ (2007) MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation. EMBO J 26:3545–3557

    Article  PubMed  CAS  Google Scholar 

  14. Cress WD, Triezenberg SJ (1991) Critical structural elements of the VP16 transcriptional activation domain. Science 251:87–90

    Article  PubMed  CAS  Google Scholar 

  15. Hermann S, Berndt KD, Wright AP (2001) How transcriptional activators bind target proteins. J Biol Chem 276:40127–40132

    Article  PubMed  CAS  Google Scholar 

  16. Ferreira ME, Hermann S, Prochasson P, Workman JL, Berndt KD, Wright APH (2005) Mechanism of transcription factor recruitment by acidic activators. J Biol Chem 280:21779–21784

    Article  PubMed  CAS  Google Scholar 

  17. Langlois C, Mas C, Di Lello P, Jenkins LMM, Legault P, Omichinski JG (2008) NMR structure of the complex between the Tfb1 subunit of TFIIH and the activation domain of VP16: structural similarities between VP16 and p53. J Am Chem Soc 130:10596–10604

    Article  PubMed  CAS  Google Scholar 

  18. Rana R, Surapureddi S, Kam W, Ferguson S, Goldstein JA (2011) Med25 is required for RNA Pol II recruitment to specific promoters thus regulating xenobiotic and lipid metabolism in human liver. Mol Cell Biol 31:466–481

    Article  PubMed  CAS  Google Scholar 

  19. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  Google Scholar 

  20. Benedit P, Paciucci R, Thomson TM, Valeri M, Nadal M, Caceres C, de Torres I, Estivill X, Lozano JJ, Morote J, Reventos J (2001) PTOV1, a novel protein overexpressed in prostate cancer containing a new class of protein homology blocks. Oncogene 20:1455–1464

    Article  PubMed  CAS  Google Scholar 

  21. Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. In: Nuclear magnetic resonance of biological macromolecules, Part C. Elsevier, San Diego, pp 210–243

  22. Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang DY, Wang HA, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33

    Article  PubMed  CAS  Google Scholar 

  23. Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516

    Article  PubMed  CAS  Google Scholar 

  24. Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice. Academic Press, Amsterdam

    Google Scholar 

  25. Shen Y, Atreya HS, Liu GH, Szyperski T (2005) G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. J Am Chem Soc 127:9085–9099

    Article  PubMed  CAS  Google Scholar 

  26. Yamazaki T, Formankay JD, Kay LE (1993) 2-Dimensional NMR experiments for correlating C-13-beta and H-1-delta/epsilon chemical-shifts of aromatic residues in C-13-labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055

    Article  CAS  Google Scholar 

  27. Renner C, Schleicher M, Moroder L, Holak TA (2002) Practical aspects of the 2D N-15-{H-1}-NOE experiment. J Biomol NMR 23:23–33

    Article  PubMed  CAS  Google Scholar 

  28. du Penhoat CH, Li Z, Atreya HS, Kim S, Yee A, Xiao R, Murray D, Arrowsmith CH, Szyperski T (2005) NMR solution structure of Thermotoga maritima protein TM1509 reveals a Zn-metalloprotease-like tertiary structure. J Struct Funct Genomics 6:51–62

    Article  Google Scholar 

  29. Guntert P, Dotsch V, Wider G, Wuthrich K (1992) Processing of multidimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629

    Article  Google Scholar 

  30. Keller R (2004) The computer aided resonance assignment tutorial. CANTINA Verlag, Goldau

    Google Scholar 

  31. Bartels C, Xia TH, Billeter M, Guntert P, Wuthrich K (1995) The program Xeasy for computer-supported NMR spectral-analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  CAS  Google Scholar 

  32. Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  PubMed  CAS  Google Scholar 

  33. Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Method Enzymol 339:91–108

    Article  CAS  Google Scholar 

  34. Pelton JG, Torchia DA, Meadow ND, Roseman S (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated III(Glc), a signal-transducing protein from Escherichia coli, using 2-dimensional heteronuclear NMR techniques. Protein Sci 2:543–558

    Article  PubMed  CAS  Google Scholar 

  35. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  PubMed  CAS  Google Scholar 

  36. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  PubMed  CAS  Google Scholar 

  37. Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  PubMed  CAS  Google Scholar 

  38. Linge JP, Williams MA, Spronk C, Bonvin A, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins Struct Funct Genet 50:496–506

    Article  PubMed  CAS  Google Scholar 

  39. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  CAS  Google Scholar 

  40. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins Struct Funct Bioinf 66:778–795

    Article  CAS  Google Scholar 

  41. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  42. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  43. Bontems F, Verger A, Dewitte F, Lens Z, Baert J-L, Ferreira E, Launoit Yd, Sizun C, Guittet E, Villeret V, Monté D (2011) NMR structure of the human mediator MED25 ACID domain. J Struct Biol 174:245–251

    Article  PubMed  CAS  Google Scholar 

  44. Milbradt AG, Kulkarni M, Yi TF, Takeuchi K, Sun ZYJ, Luna RE, Selenko P, Naar AM, Wagner G (2011) Structure of the VP16 transactivator target in the mediator. Nat Struct Mol Biol 18:410–415

    Article  PubMed  CAS  Google Scholar 

  45. Vojnic E, Mourao A, Seizl M, Simon B, Wenzeck L, Lariviere L, Baumli S, Baumgart K, Meisterernst M, Sattler M, Cramer P (2011) Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol 18:404–409

    Article  PubMed  CAS  Google Scholar 

  46. Holm L, Sander C (1995) Dali—a network tool for protein structure comparison. Trends Biochem Sci 20:478–480

    Article  PubMed  CAS  Google Scholar 

  47. Shi YH, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC, Hon M, Evans RM (2001) Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 15:1140–1151

    Article  PubMed  CAS  Google Scholar 

  48. Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W, Liptay S, Schmid RM (2002) SHARP is a novel component of the Notch/RBP-J kappa signalling pathway. EMBO J 21:5417–5426

    Article  PubMed  CAS  Google Scholar 

  49. Ariyoshi M, Schwabe JWR (2003) A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev 17:1909–1920

    Article  PubMed  CAS  Google Scholar 

  50. Youn H-S, Park U-H, Kim E-J, Um S-J (2011) PTOV1 antagonizes MED25 in RAR transcriptional activation. Biochem Biophys Res Commun 404:239–244

    Article  PubMed  CAS  Google Scholar 

  51. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  PubMed  CAS  Google Scholar 

  52. Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Shastry, C. Ciccosanti, H. Janjua, and G.V.T. Swapna for contributions in sample preparation, and J. K. Everett and S. Bhattacharya for helpful discussions. This work was supported by the National Institutes of Health, grant numbers: U54 GM094597 (T.S. and G.T.M.) and R01 AI18449 (W.T.R.). Prof. T. Szyperski is a member of the New York Structural Biology Center. The Center is a STAR center supported by the New York State Office of Science, Technology, and Academic Research. 900 MHz spectrometer was purchased with funds from NIH, USA, the Keck Foundation, New York State, and the NYC Economic Development Corporation. Support was also obtained from the University at Buffalo’s Center for Computational Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szyperski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eletsky, A., Ruyechan, W.T., Xiao, R. et al. Solution NMR structure of MED25(391–543) comprising the activator-interacting domain (ACID) of human mediator subunit 25. J Struct Funct Genomics 12, 159–166 (2011). https://doi.org/10.1007/s10969-011-9115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-011-9115-1

Keywords

Navigation