Skip to main content
Log in

New measurement of the 238U decay constant with inductively coupled plasma mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 238U decay constant (λU-238) is fundamental to radioisotope-based chronometry in the Earth and planetary sciences, yet only a single published λU-238 value (Jaffey et al. in Phys Rev C 4(5):1889–1906, 1971) is widely applied. We have determined λU-238 via the novel approach of measuring of 234Th ingrowth in high-purity 238U solutions, using isotope dilution mass spectrometry (ID-MS). The 234Th decay constant (λTh-234) was measured via decay counting with high-purity Ge (HPGe) γ detectors. Preliminary results for λU-238 agree with the value determined by α-counting [1] within the elevated uncertainty of 0.462% (k = 2). Ongoing efforts to reproduce λU-238 with reduced experimental uncertainties will inform future conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4(5):1889–1906

    Article  Google Scholar 

  2. Harrison TM, Baldwin SL, Caffee M, Gehrels GE, Schoene B, Shuster DL, Singer BS (2015) It’s about time: opportunities and challenges for U.S. Geological Survey. Institute of Geophysics and Planetary Physics Publication 6539, University of California, Los Angeles

    Google Scholar 

  3. Ludwig KR (2003) Mathematical-statistical treatment of data and errors for 230Th/U 330 geochronology. Rev Miner Geochem 52(1):631–656

    Article  CAS  Google Scholar 

  4. Schoene B, Crowley JL, Condon DJ, Schmitz MD, Bowring SA (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim Cosmochim Acta 70:426–445

    Article  CAS  Google Scholar 

  5. Schön R, Winkler G, Kutschera W (2004) A critical review of experimental data for the half-lives of the uranium isotopes 238U and 235U. Appl Radiat Isot 60:263–273

    Article  CAS  Google Scholar 

  6. Villa IM, Bonardi ML, De Bievre P, Holden NE, Renne PR (2016) IUPAC-IUGS status report on half-lives of 238U, 235U, and 234U. Geochim Cosmochim Acta 172:387–392

    Article  CAS  Google Scholar 

  7. Ludwig KR (2000) Decay constant errors in U-Pb Concordia-intercept ages. Chem Geol 166:315–318

    Article  CAS  Google Scholar 

  8. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74(18):5349–5367

    Article  CAS  Google Scholar 

  9. Holden N (1981) The uranium half-lives: a critical review. Information Analysis Center Report, National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY. BNL-NCS-51320

  10. Holden N (1989) Total and spontaneous fission half-lives for uranium, plutonium, americium, and curium nuclides. Pure Appl Chem 61(8):1483–1504

    Article  CAS  Google Scholar 

  11. Knight GB, Macklin RL (1948) Half-life of UX1 (234Th). Phys Rev 74:1540–1541

    Article  CAS  Google Scholar 

  12. Kirsch G (1920) Mitt. Ra. Inst. 127 Wien. Ber. 11a, 129, 309, M-Sch.: 377

  13. Sargent BW (1939) Can J Res A 369:527–533

    Google Scholar 

  14. Luca A (2010) Evaluation of 234Th nuclear decay data. Appl Radiat Isot 68:1591–1594

    Article  CAS  PubMed  Google Scholar 

  15. Verbruggen A, Alonso A, Eykens R, Kehoe F, Kühn H, Richter S, Aregbe Y (2008) Preparation and Certification of IRMM-3636, IRMM-3636a, and IRMM-3636b, JRC technical report 45903, EUR 23408 EN, ISSN 1018-5593. European Communities, Belgium

  16. Certificate of Analysis for NIST SRM 4342A. https://www-s.nist.gov/srmors/certificates/4342A.pdf

  17. Certificate of Analysis for New Brunswick Laboratories U010. https://science.energy.gov/~/media/nbl/pdf/price-lists/certificates/CRM_U010_5_Milligram_Sample_Size_March_2008.pdf

  18. Bateman H (1910) The solution of a system of differential equations occurring in the theory of radioactive transformations. In: Proceedings of the Cambridge Philosophical Society 15(V): 423–427. https://archive.org/details/cbarchive_122715_solutionofasystemofdifferentia1843

  19. Metropolis N, Ulam S (1949) The Mone Carlo method. J Am Stat Assoc 44(247):335–341

    Article  CAS  PubMed  Google Scholar 

  20. Parker W, Bildstein H, Getoff N (1964) Molecular plating I, a rapid and quantitative method for the electrodeposition of thorium and uranium. Nucl Inst Methods 26:55–60

    Article  CAS  Google Scholar 

  21. Curie M, Debierne A, Eve AS, Geiger H, Hahn O, Lind SC, Meyer St, Rutherford E, Schweidler E (1931) The radioactive constants as of 1930. Rev Mod Phys 3:427–445

    Article  Google Scholar 

  22. Pommé S, Camps J, Van Ammel R, Paepen J (2008) Protocol for uncertainty assessment of half-lives. J Radioanal Nucl Chem 276(2):335–339

    Article  CAS  Google Scholar 

  23. Pommé S (2015) The uncertainty of the half-life. Metroligia 52:S51–S65

    Article  CAS  Google Scholar 

  24. Kienberger CA (1949) The uranium-234 content of natural uranium and the specific α-activities of the isotopes. Phys Rev 76(11):1561

    Article  CAS  Google Scholar 

  25. Steyn J, Strelow FWE (1960) The determination of the half-life of 238U, absolute counting of α particles in a 4π-liquid scintillation counter. In: Sanielevici A (Ed) Metrology of radionuclides. IAEA STI/PUB/6, Vienna, Austria, pp 155–161

Download references

Acknowledgements

This document, LLNL-JRNL-752487, was prepared by LLNL under Contract DE-AC52-07NA27344. The authors thank Dave Ruddle of LLNL for engineering support, and T. Mark Harrison of the University of California, Los Angeles for his early support in advocating the needs of geochronology. This work was supported by LLNL’s laboratory directed research and development (LDRD) program (16-LW-053). TPD also gratefully acknowledges support from the US Department of Homeland Security National Technical Nuclear Forensics Center post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tashi Parsons-Davis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons-Davis, T., Wimpenny, J., Keller, C.B. et al. New measurement of the 238U decay constant with inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 318, 711–721 (2018). https://doi.org/10.1007/s10967-018-6148-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6148-y

Keywords

Navigation