Skip to main content
Log in

Gamma–gamma coincidence in neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Neutron activation analysis is a useful analytical technique for the determination of many nuclides. However, the resulting gamma-ray spectra frequently have overlapping photopeaks, necessitating complicated peak de-convolution techniques to perform an accurate measurement. This work investigates the viability of gamma–gamma coincidence measurements of neutron activation analysis samples for the determination of 76As, 160Tb, and 169Yb to improve peak de-convolution and significantly lower the background. It is shown that these nuclides can be better determined using gamma–gamma coincidence measurements as opposed to single detector measurements. Comparisons are shown between the single channel and coincidence-gated spectra to demonstrate the de-convolution improvements achieved with coincidence gating. Additionally, a quality assurance protocol has been developed using 226Ra and 152Eu to ascertain that the coincidence electronics are set up properly. This protocol quantitatively demonstrates the capability of this system to discriminate between true coincidence and noncoincident events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greenberg RR, Bode P, De Nadai Fernandes S EA (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta Part B. 66:193–241

    Article  CAS  Google Scholar 

  2. Khang PD, Hai NX, Tan VH, Dien NN (2011) Gamma-gamma coincidence spectrometer setup for neutron activation analysis and nuclear structure studies. Nucl Instrum Meth Phys Res A 634:47–51

    Article  CAS  Google Scholar 

  3. Kim JI, Speecke A, Hoste J (1965) Neutron activation analysis of copper in bismuth by gamma gamma-coincidence measurement. Anal Chim Acta 33:123–130

    Article  CAS  Google Scholar 

  4. Bramlitt ET (1966) Gamma–gamma coincidence counting applied to chlorine analysis by neutron activation. Anal Chem 38:1669–1674

    Article  CAS  Google Scholar 

  5. Ehmann WD, McKown DM (1969) Instrumental activation analysis of meteorites using gamma–gamma coincidence spectrometry. Anal Lett 2:49–60

    Article  CAS  Google Scholar 

  6. Wangen LE, Gladney ES, Hensley WK (1980) Determination of environmental standard reference materials by gamma-gamma coincidence method using Ge(Li) detectors. Anal Chem 52:765–767

    Article  CAS  Google Scholar 

  7. Yoho M, Landsberger S (2016) Determination of selenium in coal fly ash via γ–γ coincidence neutron activation analysis. J Radioanal Nucl Chem 307:733–737

    Article  CAS  Google Scholar 

  8. Jakůbek J, Nuitenb P, Pluhařc J, Pospíšila S, Šiňora M, Štekla I, Timorackýc S, Vobeckýd M (1998) Coincidence gamma–gamma spectroscopy system for instrumental neutron activation analysis. Nucl Instrum Meth Phys Res A 414:261–264

    Article  Google Scholar 

  9. Tomlin BE, Zeisler R, Lindstrom RM (2008) γγ Coincidence spectrometer for neutron activation analysis. Coincidence spectrometer for neutron activation analysis. Nucl Instrum Meth Phys Res A. 589:243–249

    Article  CAS  Google Scholar 

  10. Zeisler R, Cho H, Ribeiro IS, Shetty MG, Turkoglu D (2017) On neutron activation analysis with γγ coincidence spectrometry. J Radioanal Nucl Chem 314:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horne S, Landsberger S (2012) Selenium and mercury determination in biological samples using gamma–gamma coincidence and Compton suppression. J Radioanal Nucl Chem 291:49–53

    Article  CAS  Google Scholar 

  12. http://www4vip.inl.gov/gammaray/catalogs/pdf/gecat.pdf. Accessed April 2018

  13. Drescher A et al (2017) Gamma-gamma coincidence performance of LaBr 3: Ce scintillation detectors vs HPGe detectors in high count-rate scenarios. App Radiat Isotop 122:116–120

    Article  CAS  Google Scholar 

  14. XIA LLC “Pixie-4 User’s Manual” http://www.xia.com/Manuals/Pixie4_UserManual.pdf. Accessed April 2018

Download references

Funding

Funding for the Ph.D. student A. Drescher is supported by the National Nuclear Security Administration’s Consortium for Nonproliferation Enabling Capabilities through North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Drescher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drescher, A., Yoho, M. & Landsberger, S. Gamma–gamma coincidence in neutron activation analysis. J Radioanal Nucl Chem 318, 527–532 (2018). https://doi.org/10.1007/s10967-018-6033-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6033-8

Keywords

Navigation