Skip to main content
Log in

Use of neutron activation analysis for the characterization of single-wall carbon nanotube materials

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGAA) were used to characterize a variety of single-wall carbon nanotube (SWCNT) materials from different principal production processes, as well as a material containing SWCNTs together with other carbon species, catalyst residues, and trace element contaminants to be issued by the National Institute of Standards and Technology for characterization and distribution as Standard Reference Material SRM 2483 Carbon Nanotube Soot. INAA proved to be well suited for the direct determination of catalyst and contaminant trace elements requiring only minimal sample preparation. PGAA complemented the INAA data in particular with determinations of the light elements. Carbon and hydrogen results provided information on the materials purity and storage properties. Strategies for the quality assurance of the measurements in these new materials were developed. INAA and PGAA data were provided for the value assignment of mass fractions of catalyst and trace elements in the candidate SRM and a systematic overview was obtained of the catalyst and trace element contaminants associated with each of the major production routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Freiman S, Hooker S, Migler K, Arepalli S (eds) (2008) Measurement issues in single wall carbon nanotubes. NIST Spec Pub 960:19

  2. Ge C, Lao F, Li W, Li Y, Chen C, Qiu Y, Mao X, Li B, Chai Z, Zhao Y (2008) Anal Chem 80:9426–9434

    Article  CAS  Google Scholar 

  3. Zeisler R (2000) J Radioanal Nucl Chem 244:507–510

    Article  CAS  Google Scholar 

  4. Zeisler R, Lindstrom RM, Greenberg RR (2005) J Radioanal Nucl Chem 263:315–319

    CAS  Google Scholar 

  5. Mackey EA, Anderson DL, Liposky PJ, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) Nucl Instrum Methods B 226:426–440

    Article  CAS  Google Scholar 

  6. Paul RL, Lindstrom RM, Heald AE (1997) J Radioanal Nucl Chem 215:63–68

    Article  CAS  Google Scholar 

  7. Zeisler R, Paul RL, Spatz RO, Yu LL, Mann JL, Kelly WR, Lang BE, Leigh SD, Fagan J (2011) Anal Bioanal Chem 399:507–517

    Article  Google Scholar 

  8. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Chem Phys Lett 317:497–503

    Article  CAS  Google Scholar 

  9. Itkis ME, Perea D, Niyogi S, Rickard S, Hamon M, Hu H, Zhao B, Haddon RC (2003) Nano Lett 3:309–314

    Article  CAS  Google Scholar 

  10. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Science 306:1362–1365

    Article  CAS  Google Scholar 

  11. Kim Y (2003) US Patent 20,030,161,782, 28 August 2003

  12. Saito T, Ohshima S, Okazaki T, Ohmori S, Yumura M, Iijima S (2008) J Nanosci Nanotechnol 8:6153–6157

    Article  CAS  Google Scholar 

  13. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Chem Phys Lett 313:91–97

    Article  CAS  Google Scholar 

  14. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Adv Mater 21:3210–3216

    Article  CAS  Google Scholar 

  15. Zeisler R, Lindstrom RM, Greenberg RR (2005) J Radioanal Nucl Chem 263:315–319

    CAS  Google Scholar 

  16. Zeisler R (2000) J Radioanal Nucl Chem 244:507–510

    Article  CAS  Google Scholar 

  17. Lindstrom RM, Zeisler R, Mackey EA, Liposky PJ, Popelka-Filcoff RS, Williams RE (2008) J Radioanal Nucl Chem 278:665–669

    Article  CAS  Google Scholar 

  18. Paul RL, Mackey EA (1994) J Radioanal Nucl Chem 181:321–333

    Article  CAS  Google Scholar 

  19. SRM Certificates of Analysis (2010). http://ts.nist.gov/measurementservices/referencematerials/index.cfm. Accessed 6 Jan 2010

  20. Roelandts I, Gladney ES (1998) Fresenius J Anal Chem 360:327–338

    Article  CAS  Google Scholar 

  21. Fagan JA, Lin NJ, Zeisler R, Hight Walker AR (2010) Nano Res. doi:10.1007/s12274-011-0094-0

Download references

Acknowledgments

The authors wish to acknowledge M. R. Winchester and T. A. Butler, Analytical Chemistry Division, NIST, for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Zeisler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeisler, R., Oflaz, R., Paul, R.L. et al. Use of neutron activation analysis for the characterization of single-wall carbon nanotube materials. J Radioanal Nucl Chem 291, 561–567 (2012). https://doi.org/10.1007/s10967-011-1290-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1290-9

Keywords

Navigation