Skip to main content
Log in

Properties of talc filled reactor-made thermoplastic polyolefin composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the effect of micron- and submicron-sized talc particles on the mechanical and rheological properties of reactor-made thermoplastic polyolefin (rTPO) is investigated. Using a twin-screw extruder, rTPO composites containing up to 30 wt% talc were prepared by melt compounding. The sensitivity analysis of the findings showed that the impact resistance of rTPO is more affected by the temperature rather than the presence of talc particles. Based on the notched Charpy impact test, the composites containing up to 25 wt% talc particles exhibited a very high impact strength and did undergo partial break at 23 °C, while they showed complete break at −30 °C. Flexural modulus, melt viscosity, and heat distortion temperature (HDT) of the composites were improved by incorporation of fillers into the rTPO and these increments were more pronounced for the compounds containing submicron-sized talc particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leong YW, Bakar MBA, Ishak ZAM et al (2003) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci 91:3315–3326

    Article  Google Scholar 

  2. Deshmane C, Yuan Q, Misra RDK (2007) High strength-toughness combination of melt intercalated nanoclay-reinforced thermoplastic olefins. Mater Sci Eng A 460–461:277–287. https://doi.org/10.1016/j.msea.2007.01.045

    Article  CAS  Google Scholar 

  3. Lu M-L, Chiou K-C, Chang F-C (1996) Fracture behavior of polypropylene/ ethylene- diene-terpolymer blends : effect of temperatures, notch radius and rubber content. J Polym Res 3:73–82. https://doi.org/10.1007/BF01492897

    Article  CAS  Google Scholar 

  4. Pustak A, Denac M, Leskovac M, Švab I, Musil V, Šmit I (2016) Structure and morphology of silica-reinforced polypropylene composites modified with m-EPR copolymers. J Polym Res 23:37. https://doi.org/10.1007/s10965-016-0927-3

    Article  CAS  Google Scholar 

  5. Balkan O, Demirer H (2010) Mechanical properties of glass bead- and wollastonite-filled isotactic-polypropylene composites modified with thermoplastic elastomers. Polym Compos NA-NA:NA. https://doi.org/10.1002/pc.20953

  6. Panaitescu DM, Radovici C, Iorga MD et al (2012) Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites. Polym Bull 69:1073–1091. https://doi.org/10.1007/s00289-012-0780-4

    Article  CAS  Google Scholar 

  7. Yazdani H, Morshedian J, Khonakdar HA (2006) Effect of maleated polypropylene and impact modifiers on the morphology and mechanical properties of PP/Mica composites. Polym Compos 27:614–620. https://doi.org/10.1002/pc.20237

    Article  CAS  Google Scholar 

  8. Hao J, Wang H, Song Y, Wang W (2018) Simultaneously improving the toughness and stiffness of wood flour/polypropylene composites using elastomer A669/talcum blends. Polym Compos 40:1335–1341. https://doi.org/10.1002/pc.24863

    Article  CAS  Google Scholar 

  9. Massey LK, Massey LK (2003) Olefinic thermoplastic elastomers (TPO). Permeability Prop Plast Elastomers:421–425. https://doi.org/10.1016/B978-188420797-6.50072-3

    Chapter  Google Scholar 

  10. Xu XF, Ghanbari A, Leelapornpisit W, Heuzey MC, Carreau P (2011) Effect of ionomer on barrier and mechanical properties of PET/Organoclay nanocomposites prepared by melt compounding. Int Polym Process 26:444–455. https://doi.org/10.3139/217.2477

    Article  CAS  Google Scholar 

  11. Jahani Y (2011) Comparison of the effect of mica and talc and chemical coupling on the rheology, morphology, and mechanical properties of polypropylene composites. Polym Adv Technol 22:942–950. https://doi.org/10.1002/pat.1600

    Article  CAS  Google Scholar 

  12. Ghanbari A, Prud’homme RE (2017) Lamellar and spherulitic crystallization of poly(s-2-hydroxybutanoic acid) and its stereocomplexes. Polymer (Guildf) 112:377–384. https://doi.org/10.1016/j.polymer.2017.02.018

    Article  CAS  Google Scholar 

  13. McGenity PM, Hooper JJ, Paynter CD et al (1992) Nucleation and crystallization of polypropylene by mineral fillers: relationship to impact strength. Polymer (Guildf) 33:5215–5224. https://doi.org/10.1016/0032-3861(92)90804-6

    Article  CAS  Google Scholar 

  14. Jahani Y, Ehsani M (2009) The effects of epoxy resin nano particles on shrinkage behavior and thermal stability of talc-filled polypropylene. Polym Bull 63:743–754. https://doi.org/10.1007/s00289-009-0145-9

    Article  CAS  Google Scholar 

  15. Lapcik L, Jindrova P, Lapcikova B et al (2008) Effect of the talc filler content on the mechanical properties of polypropylene composites. J Appl Polym Sci 110:2742–2747. https://doi.org/10.1002/app.28797

    Article  CAS  Google Scholar 

  16. Castillo LA, Barbosa SE, Capiati NJ (2013) Influence of talc morphology on the mechanical properties of talc filled polypropylene. J Polym Res 20. https://doi.org/10.1007/s10965-013-0152-2

  17. El-Midany AA, Ibrahim SS (2010) The effect of mineral surface nature on the mechanical properties of mineral-filled polypropylene composites. Polym Bull 64:387–399. https://doi.org/10.1007/s00289-009-0209-x

    Article  CAS  Google Scholar 

  18. Ghanbari A, Heuzey M-C, Carreau PJ, Ton-That M-T (2013) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74. https://doi.org/10.1007/s00397-012-0667-1

    Article  CAS  Google Scholar 

  19. Wang K, Bahlouli N, Addiego F, Ahzi S, Rémond Y, Ruch D, Muller R (2013) Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym Degrad Stab 98:1275–1286. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2013.04.006

    Article  CAS  Google Scholar 

  20. Maiti SN, Das R (2005) Mechanical properties of impact i-PP/CSM rubber blends. Int J Polym Mater 54:467–482. https://doi.org/10.1080/00914030390260436

    Article  CAS  Google Scholar 

  21. Lawrence EN (1966) Simple theory of stress-strain properties of filled polymers. J Appl Polym Sci 10:97–103

    Article  Google Scholar 

  22. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer (Guildf) 54:1361–1369. https://doi.org/10.1016/J.POLYMER.2012.12.066

    Article  CAS  Google Scholar 

  23. Azizi H, Faghihi J (2009) An investigation on the mechanical and dynamic rheological properties of single and hybrid filler/polypropylene composites based on talc and calcium carbonate. Polym Compos 30:1743–1748. https://doi.org/10.1002/pc.20685

    Article  CAS  Google Scholar 

  24. Wu J-H, Chen C-W, Wu Y-T, Wu GT, Kuo MC, Tsai Y (2015) Mechanical properties, morphology, and crystallization behavior of polypropylene/elastomer/talc composites. Polym Compos 36:69–77. https://doi.org/10.1002/pc.22914

    Article  CAS  Google Scholar 

  25. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites2nd edn. Taylor & Francis Group CRC Press, Broken Sound Pkwy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghanbari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, A., Behzadfar, E. & Arjmand, M. Properties of talc filled reactor-made thermoplastic polyolefin composites. J Polym Res 26, 241 (2019). https://doi.org/10.1007/s10965-019-1902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1902-6

Keywords

Navigation