Skip to main content

Advertisement

Log in

Evaluation of adhesion, proliferation, and differentiation of human adipose-derived stem cells on keratin

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Controlled adhesion and continuous growth of human adipose stem cells (hASCs) on delivery carriers are critical to cell therapy and tissue engineering. Keratin, derived from human hair, can be manipulated as a desired configuration and serve as an extracellular matrix. However, the effects of keratin on stem cells have not been fully understood. In this study, keratin-coting substrates were prepared to demonstrate the modulations of keratin matrix to the adhesion, proliferation, and differentiation of hASCs. The present results showed that keratin-coating substrates promoted hASCs adhesion, proliferation, and viability relative to those of untreated polystyrene plates. Evaluations of lineage-specific genetic markers and proteins revealed that the adipogenic, osteogenic and chondrogenic differentiations of hASCs can be successfully induced, which suggested that the stemness of hASCs was maintained when cultured on keratin-coating substrates. Relative to untreated polystyrene plates, keratin-coating increased the mRNA levels of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPAR- γ), and CCAAT-enhancer binding protein alpha (CEBP-α) to hASCs, which reveals an improvement in adipogenic differentiation. Likewise, keratin also upregulated osteogenic markers such as type I collagen, alpha 1 (COL1A1), runt-related transcription factor 2 (RUNX2), and vitamin D receptor (VDR) to hASCs. Similarly, the chondrogenic marker SRY-box 9 (SOX9) was improved to hASCs on keratin-coating. The combination of hASCs with keratin shall be promising in the application of tissue repair to regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17(5):349–364. https://doi.org/10.1089/ten.TEB.2011.0238

    Article  CAS  Google Scholar 

  2. Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D, Brooks RA, Rushton N, Best SM, Cameron RE (2011) Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater 7(9):3237–3247. https://doi.org/10.1016/j.actbio.2011.06.002

    Article  CAS  Google Scholar 

  3. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 12(7):689–693

    CAS  Google Scholar 

  4. Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15(3):467–480. https://doi.org/10.1038/sj.mt.6300084

    Article  CAS  Google Scholar 

  5. Chaubaroux C, Vrana E, Debry C, Schaaf P, Senger B, Voegel JC, Haikel Y, Ringwald C, Hemmerle J, Lavalle P, Boulmedais F (2012) Collagen-based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules 13(7):2128–2135. https://doi.org/10.1021/bm300529a

    Article  CAS  Google Scholar 

  6. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344. https://doi.org/10.1002/bip.20871

    Article  CAS  Google Scholar 

  7. Romanova OA, Grigor'ev TE, Goncharov ME, Rudyak SG, Solov'yova EV, Krasheninnikov ST, Saprykin VP, Sytina EV, Chvalun SN, Pal'tsev MA, Panteleev AA (2015) Chitosan as a Modifying Component of Artificial Scaffold for Human Skin Tissue Engineering. Bull Exp Biol Med 159(4):557–566. https://doi.org/10.1007/s10517-015-3014-6

    Article  CAS  Google Scholar 

  8. Chandy T, Sharma CP (1990) Chitosan--as a biomaterial. Biomater Artif Cells Artif Organs 18(1):1–24

    Article  CAS  Google Scholar 

  9. Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  CAS  Google Scholar 

  10. Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67(3):344–353

    Article  CAS  Google Scholar 

  11. Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, Cho CS (2002) Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23(14):2827–2834

    Article  CAS  Google Scholar 

  12. Rowley JA, Mooney DJ (2002) Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 60(2):217–223

    Article  CAS  Google Scholar 

  13. Mogosanu GD, Grumezescu AM, Chifiriuc MC (2014) Keratin-based biomaterials for biomedical applications. Curr Drug Targets 15(5):518–530

    Article  CAS  Google Scholar 

  14. Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14(5):612–619

    Article  CAS  Google Scholar 

  15. Pace LA, Plate JF, Mannava S, Barnwell JC, Koman LA, Li Z, Smith TL, Van Dyke M (2014) A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue Eng Part A 20(3-4):507–517. https://doi.org/10.1089/ten.TEA.2013.0084

    CAS  Google Scholar 

  16. Srinivasan B, Kumar R, Shanmugam K, Sivagnam UT, Reddy NP, Sehgal PK (2010) Porous keratin scaffold-promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res B Appl Biomater 92(1):5–12. https://doi.org/10.1002/jbm.b.31483

    Article  Google Scholar 

  17. Verma V, Verma P, Ray P, Ray AR (2008) Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 3(2):025007. https://doi.org/10.1088/1748-6041/3/2/025007

    Article  Google Scholar 

  18. Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214(4):516–559. https://doi.org/10.1111/j.1469-7580.2009.01066.x

    Article  CAS  Google Scholar 

  19. Velez-delValle C, Marsch-Moreno M, Castro-Munozledo F, Galvan-Mendoza IJ, Kuri-Harcuch W (2016) Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Sci Rep 6:24389. https://doi.org/10.1038/srep24389

    Article  CAS  Google Scholar 

  20. Moch M, Herberich G, Aach T, Leube RE, Windoffer R (2013) Measuring the regulation of keratin filament network dynamics. Proc Natl Acad Sci U S A 110(26):10664–10669. https://doi.org/10.1073/pnas.1306020110

    Article  CAS  Google Scholar 

  21. Leube RE, Moch M, Windoffer R (2015) Intermediate filaments and the regulation of focal adhesion. Curr Opin Cell Biol 32:13–20. https://doi.org/10.1016/j.ceb.2014.09.011

    Article  CAS  Google Scholar 

  22. Han MO, Chun JA, Lee WH, Lee JW, Chung CH (2007) A simple improved method for protein extraction from human head hairs. J Cosmet Sci 58(5):527–534

    CAS  Google Scholar 

  23. Plowman JE, Deb-Choudhury S, Thomas A, Clerens S, Cornellison CD, Grosvenor AJ, Dyer JM (2010) Characterisation of low abundance wool proteins through novel differential extraction techniques. Electrophoresis 31(12):1937–1946. https://doi.org/10.1002/elps.201000053

    Article  CAS  Google Scholar 

  24. YL W, Lin CW, Cheng NC, Yang KC, Yu J (2017) Modulation of keratin in adhesion, proliferation, adipogenic, and osteogenic differentiation of porcine adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 105(1):180–192. https://doi.org/10.1002/jbm.b.33551

    Article  Google Scholar 

  25. Yamauchi K, Maniwa M, Mori T (1998) Cultivation of fibroblast cells on keratin-coated substrata. J Biomater Sci Polym Ed 9(3):259–270

    Article  CAS  Google Scholar 

  26. Hill PS, Apel PJ, Barnwell J, Smith T, Koman LA, Atala A, Van Dyke M (2011) Repair of peripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue Eng Part A 17(11-12):1499–1505. https://doi.org/10.1089/ten.TEA.2010.0184

    Article  CAS  Google Scholar 

  27. Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Develop Growth Differ 55(3):309–318. https://doi.org/10.1111/dgd.12049

    Article  CAS  Google Scholar 

  28. Minteer D, Marra KG, Rubin JP (2013) Adipose-derived mesenchymal stem cells: biology and potential applications. Adv Biochem Eng Biotechnol 129:59–71. https://doi.org/10.1007/10_2012_146

    CAS  Google Scholar 

  29. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260. https://doi.org/10.1161/01.RES.0000265074.83288.09

    Article  CAS  Google Scholar 

  30. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. https://doi.org/10.1091/mbc.E02-02-0105

    Article  CAS  Google Scholar 

  31. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827. https://doi.org/10.1634/stemcells.2006-0589

    Article  Google Scholar 

  32. Kim HJ, Park SH, Durham J, Gimble JM, Kaplan DL, Dragoo JL (2012) In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds. J Tissue Eng 3(1):2041731412466405. https://doi.org/10.1177/2041731412466405

    Article  Google Scholar 

  33. Freiman A, Shandalov Y, Rozenfeld D, Shor E, Segal S, Ben-David D, Meretzki S, Egozi D, Levenberg S (2016) Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Res Ther 7:5. https://doi.org/10.1186/s13287-015-0251-6

    Article  Google Scholar 

  34. Klar AS, Guven S, Zimoch J, Zapiorkowska NA, Biedermann T, Bottcher-Haberzeth S, Meuli-Simmen C, Martin I, Scherberich A, Reichmann E, Meuli M (2016) Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int 32(1):17–27. https://doi.org/10.1007/s00383-015-3808-7

    Article  Google Scholar 

  35. Shin S, Lee A, Lee S, Lee K, Kwon J, Yoon MY, Hong J, Lee D, Lee GH, Kim J (2010) Microwave-assisted extraction of human hair proteins. Anal Biochem 407(2):281–283. https://doi.org/10.1016/j.ab.2010.08.021

    Article  CAS  Google Scholar 

  36. Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15(2):231–241. https://doi.org/10.1089/ten.tea.2008.0253

    Article  CAS  Google Scholar 

  37. Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA (2015) Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation. J Tissue Eng 6:2041731415592356. https://doi.org/10.1177/2041731415592356

    Article  Google Scholar 

  38. Tucker HA, Bunnell BA (2011) Characterization of human adipose-derived stem cells using flow cytometry. Methods Mol Biol 702:121–131. https://doi.org/10.1007/978-1-61737-960-4_10

    Article  CAS  Google Scholar 

  39. Abraham S, Eroshenko N, Rao RR (2009) Role of bioinspired polymers in determination of pluripotent stem cell fate. Regen Med 4(4):561–578. https://doi.org/10.2217/rme.09.23

    Article  CAS  Google Scholar 

  40. Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 45:343–347. https://doi.org/10.1016/j.msec.2014.09.021

    Article  CAS  Google Scholar 

  41. Feng Y, Borrelli M, Meyer-Ter-Vehn T, Reichl S, Schrader S, Geerling G (2014) Epithelial wound healing on keratin film, amniotic membrane and polystyrene in vitro. Curr Eye Res 39(6):561–570. https://doi.org/10.3109/02713683.2013.853804

    Article  CAS  Google Scholar 

  42. Chung MT, Zimmermann AS, Paik KJ, Morrison SD, Hyun JS, Lo DD, McArdle A, Montoro DT, Walmsley GG, Senarath-Yapa K, Sorkin M, Rennert R, Chen HH, Chung AS, Vistnes D, Gurtner GC, Longaker MT, Wan DC (2013) Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine. Stem Cells Transl Med 2(10):808–817. https://doi.org/10.5966/sctm.2012-0183

    Article  CAS  Google Scholar 

  43. Ahn J, Lee H, Kim S, Ha T (2010) Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling. Am J Physiol Cell Physiol 298(6):C1510–C1516. https://doi.org/10.1152/ajpcell.00369.2009

    Article  CAS  Google Scholar 

  44. Prestwich TC, Macdougald OA (2007) Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 19(6):612–617. https://doi.org/10.1016/j.ceb.2007.09.014

    Article  CAS  Google Scholar 

  45. Bruderer M, Richards RG, Alini M, Stoddart MJ (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28:269–286

    Article  CAS  Google Scholar 

  46. Olivares-Navarrete R, Sutha K, Hyzy SL, Hutton DL, Schwartz Z, McDevitt T, Boyan BD (2012) Osteogenic differentiation of stem cells alters vitamin D receptor expression. Stem Cells Dev 21(10):1726–1735. https://doi.org/10.1089/scd.2011.0411

    Article  CAS  Google Scholar 

  47. Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122(Pt 4):546–553. https://doi.org/10.1242/jcs.036293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Taiwan University Hospital. Support for this study included providing human adipose stem cell by Department of Surgery of National Taiwan University Hospital. The authors would like to thank for technical assistance from the student of department of Chemical Engineering of National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CW., Yang, KC., Cheng, NC. et al. Evaluation of adhesion, proliferation, and differentiation of human adipose-derived stem cells on keratin. J Polym Res 25, 40 (2018). https://doi.org/10.1007/s10965-018-1446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1446-1

Keywords

Navigation