Skip to main content
Log in

Phenazine-containing poly(phenylenevinylene): a new polymer with impressive field emission properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Phenazine-containing poly(phenylenevinylene) (P(PHN-PV)) was synthesized using Wittig-Horner polycondensation of the appropriately designed monomers viz. 5,10-dioctyl-5,10-dihydrophenazine-2,7-dicarbaldehyde and tetraethyl ((2,5-bis((2-ethylhexyl) oxy)-1,4 phenylene) bis(methylene)) bis(phosphonate). The design embraces the specific motivation of incorporating the nitrogen-containing heterocycle viz. .phenazine in poly(phenylenevinylene) backbone. P(PHN-PV) exhibited reversible redox properties. In the field emission measurements performed on the film of P(PHN-PV), the turn-on field was observed to be 1.93 V/μm for the current density of 10 μA/cm2. The maximum current density of ~4.87 mA/cm2 was achieved at the applied field of 3.84 V/μm. The emission current showed impressive stability for 6 h at a constant current of 1 μA (current density of about 20 μA/cm2). These results emphasize the role of phenazine heterocycle with lone pair of electrons on nitrogen in lowering the oxidation onset and in turn reduction of the turn-on voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin Z, Wang J (eds) (2014) Low-cost nanomaterials: Toward greener and more efficient energy applications. Springer - Verlag London, VI, 488. https://doi.org/10.1007/978-1-4471-6473-9

  2. Torres T, Bottari G (eds) (2013) Organic nanomaterials: synthesis, characterization, and device applications. John Wiley & Sons, Inc., Hoboken

  3. Burchell TD (1999) Carbon materials for advanced technologies. Elsevier Science, Oak Ridge, p 540

    Google Scholar 

  4. Jia C, Ma B, Xin N, Guo X (2015). Acc Chem Res 48:2565–2575

    Article  CAS  Google Scholar 

  5. Pan J, Sheng Y, Zhang J, Huang P, Zhang X, Feng B (2015). ACS Appl Mater Interfaces 7:7878–7883

    Article  CAS  Google Scholar 

  6. Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015). J Mater Chem A 3:14929

    Article  CAS  Google Scholar 

  7. Patil SS, Jha P, Aswal DK, Gupta SK, Yakhmi JV, Joag DS, More MA (2012). Polym Adv Technol 23:215–219

    Article  CAS  Google Scholar 

  8. Wang C, Wang Z, Li M, Li H (2001). Chem Phys Lett 341:431–434

    Article  CAS  Google Scholar 

  9. Patil SS, Harpale KV, Koiry SP, Patil KR, Aswal DK, More MA (2015). J Appl Polym Sci 132:5

    Article  Google Scholar 

  10. Sameera I, Bhatia R, Ouyang J, Prasad V, Menon R (2013). Appl Phys Lett 102:033102

    Article  Google Scholar 

  11. Ding H, Feng T, Chen Y, Sun Z (2012). Appl Surf Sci 25:5191–5194

    Article  Google Scholar 

  12. Yan H, Zhang L, Shen J, Chen Z, Shi G, Zhang B (2006). Nanotechnology 17:3446–3450

    Article  CAS  Google Scholar 

  13. Patil SS, Koiry SP, Veerender P, Aswal DK, Gupta SK, Joag DS, More MA (2012). RSC Adv Technol 2:5822–5827

    Article  CAS  Google Scholar 

  14. Kim BH, Park DH, Joo J, Yu SG, Lee SH (2005). Synth Met 150:279–284

    Article  CAS  Google Scholar 

  15. Musa I, Munindrasdasa DAI, Amaratunga GAJ, Eccleston W (1998). Nature 395:362

    Article  CAS  Google Scholar 

  16. Sridhar S, Tiwary C, Vinod S, Taha-Tijerina JJ, Sridhar S, Kalaga K, Sirota B, Hart AHC, Ozden S, Sinha RK, Harsh VR, Choi W, Kordás K, Ajayan PM (2014). ACS Nano 8:7763–7770

    Article  CAS  Google Scholar 

  17. Kim BH, Kim MS, Park KT, Lee JK, Park DH, Joo J, Yu SG, Lee SH (2003). Appl Phys Lett 83:539

    Article  CAS  Google Scholar 

  18. Rujia Z, Zhang Z, Jiang L, Xu K, Tian Q, Xue S, Hu J, Bandob Y, Golberg D (2012). J Mater Chem 22:19196

    Article  CAS  Google Scholar 

  19. Chen N, Qian X, Lin H, Liua H, Li Y (2012). J Mater Chem 22:11068

    Article  CAS  Google Scholar 

  20. Viskadouros GM, Stylianakis MM, Kymakis E, Stratakis E (2014). ACS Appl Mater Interfaces 6:388–393

    Article  CAS  Google Scholar 

  21. Alexandrou I, Kymakis E, Amaratunga GAJ (2002). Appl Phys Lett 80:1435

    Article  CAS  Google Scholar 

  22. Jin YW, Jung JE, Park YJ, Choi JH, Jung DS, Lee HW, Park SH, Lee NS, Kim JM, Ko TY, Lee SJ, Hwang SY, You JH, Yoo JB, Park CY (2002). J Appl Phys 92:1065

    Article  CAS  Google Scholar 

  23. Okano K, Koizumi S, Silva SP, Amaratunga GAJ (1996). Nature 381:140–141

    Article  CAS  Google Scholar 

  24. Amaratunga GAJ, Silva SRP (1996). Appl Phys Lett 68:2529–2531

    Article  CAS  Google Scholar 

  25. Bagher AM (2014). Sustainable Energy 2:85–90

    Article  Google Scholar 

  26. Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B, van Duren JKJ, Janssen RAJ (2005). Adv Funct Mater 15:795–801

    Article  CAS  Google Scholar 

  27. Suppiah S, Mohamad SM, Juhari N (2011) Fabrication of MEH-PPV based organic light emitting diode and transistor. IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 28-30 Sept 2011. doi:https://doi.org/10.1109/RSM.2011.6088367

  28. Lei T, Xia X, Wang JY, Liu CJ, Pei J (2014). J Am Chem Soc 136:2135–2141

    Article  CAS  Google Scholar 

  29. Lei T, Dou JH, Cao XY, Wang JY, Pei J (2013). J Am Chem Soc 135:12168–12171

    Article  CAS  Google Scholar 

  30. Todescato F, Capelli R, Dinelli F, Murgia M, Camaioni N, Yang M, Bozio R, Muccini M (2008). J Phys Chem B 112:10130–10136

    Article  CAS  Google Scholar 

  31. Hiraoka S, Okamoto T, Kozaki M, Shiomi D, Sato K, Takui T, Okada K (2004). J Am Chem Soc 126:58–59

    Article  CAS  Google Scholar 

  32. Terada E, Okamoto T, Kozaki M, Masaki ME, Shiomi D, Sato K, Takui T, Okada K (2005). J Organomet Chem 70:10073–10081

    Article  CAS  Google Scholar 

  33. Thalladi VR, Smolka T, Gehrke A, Boese R, Sustmann R (2000). New J Chem 24:143–147

    Article  CAS  Google Scholar 

  34. Price-Whelan A, Dietrich LEP, Newman DK (2006). Nat Chem Biol 2:71–78

    Article  CAS  Google Scholar 

  35. Pierson IIILS, Pierson EA (2010). Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  Google Scholar 

  36. Zheng Z, Dong Q, Gou L, Su JH, Huang J (2014). J Mater Chem C 2:9858–9865

    Article  CAS  Google Scholar 

  37. Gu PY, Zhao Y, He JH, Zhang J, Wang C, Xu QF, Lu JM, Sun XW, Zhang QJ (2015). Org Chem 80:3030–3035

    Article  CAS  Google Scholar 

  38. Lee J, Shizu K, Tanaka H, Nakanotani H, Yasuda T, Kaji H, Adachi C (2015). J Mater Chem C 3:2175–2181

    Article  CAS  Google Scholar 

  39. Song HJ, Goh M, Choi KH, Lee S, Moon DK, Shin GJ (2015). J IndEng Chem 23:338–343

    Google Scholar 

  40. Lee DC, Brownell LV, Yan L, You W (2014). ACS Appl Mater Interfaces 6:15767–15773

    Article  CAS  Google Scholar 

  41. Li G, Lu Z, Li C, Bo Z (2015). Polym Chem 6:1613–1618

    Article  CAS  Google Scholar 

  42. Lu X, Lan T, Qin Z, Wang ZS, Zhou G (2014). ACS Appl Mater Interfaces 6:19308–19317

    Article  CAS  Google Scholar 

  43. Richard CA, Pan Z, Hsu HY, Cekli S, Schanze KS, Reynolds JR (2014). ACS Appl Mater Interfaces 6:5221–5227

    Article  CAS  Google Scholar 

  44. Yang L, Li X, Yang J, Qu Y, Hua J (2013). ACS Appl Mater Interfaces 5:1317–1326

    Article  CAS  Google Scholar 

  45. Wang B, Wasielewski MR (1997). J Am Chem Soc 119:12–21

    Article  CAS  Google Scholar 

  46. Liu B, Yu WL, Pei J, Liu SY, Lai YH, Huang W (2001). Macromolecules 34:7932–7940

    Article  CAS  Google Scholar 

  47. Iwasa Y, Koda T, Koshihara S, Tokura Y, Iwasawa N, Saito G (1989). Phys Rev B: Condens Matter Mater Phys 39:10441–10444

    Article  CAS  Google Scholar 

  48. Okamoto T, Terada E, Kozaki M, Uchida M, Kikukawa S, Okada K (2003). Org Lett 5:373–376

    Article  CAS  Google Scholar 

  49. Koike R, Katayose Y, Ohta A, Motoyoshiya J, Nishii Y, Aoyam H (2005). Tetrahedron 61:11020–11026

    Article  CAS  Google Scholar 

  50. Narasimha K, Jayakannan M (2014). Appl Mater Interfaces 6:19385–19396

    Article  CAS  Google Scholar 

  51. Fowler RH, Nordheim L (1928). R Soc Lond A 119:173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Satishchandra B. Ogale (Centre of Excellence in Solar Energy, Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India) for valuable support. The authors also thank Dr. Dipti Dhakaras for conductivity measurements, Dr. Meenal Deo for help with Mott Schottky measurements, Mukta Tathavadekar for spray coating and Dr. Manoj Mane for DFT calculations. Shraddha Chhatre gratefully acknowledges the CSIR India, for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shraddha Chhatre, Mahendra More or Prakash P. Wadgaonkar.

Electronic supplementary material

ESM 1

(DOC 6250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhatre, S., Ichake, A., Harpale, K. et al. Phenazine-containing poly(phenylenevinylene): a new polymer with impressive field emission properties. J Polym Res 25, 61 (2018). https://doi.org/10.1007/s10965-017-1428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1428-8

Keywords

Navigation