Skip to main content
Log in

The Exact Hausdorff Measure of the Zero Set of Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let {X(t), t∈ℝN} be a fractional Brownian motion in ℝd of index H. If L(0,I) is the local time of X at 0 on the interval I⊂ℝN, then there exists a positive finite constant c(=c(N,d,H)) such that

$$m_\phi\bigl(X^{-1}(0)\cap I\bigr)=cL(0,I),$$

where \(\phi(t)=t^{N-dH}(\log\log\frac{1}{t})^{dH/N}\) , and m φ (E) is the Hausdorff φ-measure of E. This refines a previous result of Xiao (Probab. Theory Relat. Fields 109: 126–197, 1997) on the relationship between the local time and the Hausdorff measure of zero set for d-dimensional fractional Brownian motion on ℝN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J.: The uniform dimension of the level sets of a Brownian sheet. Ann. Probab. 6, 509–515 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adler, R.J.: The Geometry of Random Fields. Wiley, New York (1981)

    MATH  Google Scholar 

  3. Baraka, D.: Path properties of fractional Brownian motion. Thesis, E.P.F.L.

  4. Baraka, D., Mountford, T.: A law of iterated logarithm for fractional Brownian motions. In: Lecture Notes in Mathematics, vol. 1934, pp. 161–179. Springer, Berlin (2008)

    Google Scholar 

  5. Berman, S.M.: Local times and sample function properties of stationary Gaussian processes. Trans. Am. Math. Soc. 137, 277–299 (1969)

    Article  MATH  Google Scholar 

  6. Berman, S.M.: Gaussian sample functions: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46, 63–86 (1972)

    MATH  MathSciNet  Google Scholar 

  7. Berman, S.M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23, 69–94 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berman, S.M.: Spectral conditions for local nondeterminism. Stoch. Process. Appl. 27(1), 73–84 (1987)

    Article  MATH  Google Scholar 

  9. Cuzick, J.: Local nondeterminism and the zeros of Gaussian processes. Ann. Probab. 6, 72–84 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cuzick, J., Du Peez, J.P.: Joint continuity of Gaussian local times. Ann. Probab. 10, 810–817 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davies, P.L.: Local Hölder conditions for the local times of certain stationary Gaussian processes. Ann. Probab. 4, 277–298 (1976)

    Article  MATH  Google Scholar 

  12. Davies, P.L.: The exact Hausdorff measure of the zero set of certain stationary Gaussian processes. Ann. Probab. 5, 740–755 (1977)

    Article  MATH  Google Scholar 

  13. Ehm, W.: Sample function properties of multiparameter stable processes. Z. Wahrscheinlichkeitstheorie Verw. Geb. 56, 195–228 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  15. Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications. Wiley, New York (1990)

    MATH  Google Scholar 

  16. Geman, D., Horowitz, J.: Occupation densities. Ann. Probab. 8, 1–67 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kahane, J.P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  18. Kasahara, Y., Kono, N., Ogawa, T.: On tail probabilities of local times of Gaussian processes. Stoch. Process. Appl. 82, 15–21 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Monrad, D., Pitt, L.D.: Local nondeterminism and Hausdorff dimension. In: Progress in Probability and Statistics (Seminar on Stochastic Processes, vol. 13, p. 163–189. Birkhäuser, Boston (1987)

    Google Scholar 

  20. Mountford, T., Shieh, N., Xiao, Y.: Tail behaviour of local times for fractional Brownian motion (2008, in preparation)

  21. Perkins, E.: The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrscheinlichkeitstheorie Verw. Geb. 58, 373–388 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pitt, L.D.: Local times for Gaussian vector fields. Indiana Univ. Math. J. 27, 309–330 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1999)

    MATH  Google Scholar 

  24. Rogers, C.A.: Hausdorff Measures. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  25. Rosen, J.: Self-intersections of random fields. Ann. Probab. 12, 108–119 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling. Chapman & Hall, New York (1994)

    Google Scholar 

  27. Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23, 767–775 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Taylor, S.J., Wendel, J.G.: The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie Verw. Geb. 6, 170–180 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  29. Xiao, Y.: Dimensions results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23, 273–291 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiao, Y.: Hausdorff measure of the sample paths of Gaussian random fields. Osaka J. Math. 33, 895–913 (1996)

    MATH  MathSciNet  Google Scholar 

  31. Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157 (1997)

    Article  MATH  Google Scholar 

  32. Xiao, Y.: The packing measure of the trajectories of multiparameter fractional Brownian motion. Math. Proc. Camb. Philos. Soc. 135, 349–375 (2003)

    Article  MATH  Google Scholar 

  33. Xiao, Y.: Strong local nondeterminism of Gaussian random fields and its applications. In: Lai, T.-L., Shao, Q.-M., Qian, L. (eds.) Asymptotic Theory in Probability and Statistics with Applications, pp. 136–176. Higher Education Press, Beijing (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Mountford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraka, D., Mountford, T.S. The Exact Hausdorff Measure of the Zero Set of Fractional Brownian Motion. J Theor Probab 24, 271–293 (2011). https://doi.org/10.1007/s10959-009-0271-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0271-1

Mathematics Subject Classification (2000)

Navigation