Skip to main content
Log in

On the Growth Rate of a Linear Stochastic Recursion with Markovian Dependence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the linear stochastic recursion \(x_{i+1} = a_{i}x_{i}+b_{i}\) where the multipliers \(a_i\) are random and have Markovian dependence given by the exponential of a standard Brownian motion and \(b_{i}\) are i.i.d. positive random noise independent of \(a_{i}\). Using large deviations theory we study the growth rates (Lyapunov exponents) of the positive integer moments \(\lambda _q = \lim _{n\rightarrow \infty } \frac{1}{n} \log \mathbb {E}[(x_n)^q]\) with \(q\in \mathbb {Z}_+\). We show that the Lyapunov exponents \(\lambda _q\) exist, under appropriate scaling of the model parameters, and have non-analytic behavior manifested as a phase transition. We study the properties of the phase transition and the critical exponents using both analytic and numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  2. Alfonsi, A.: High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp. 79, 209–237 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Aristoff, D., Zhu, L.: On the phase transition curve in a directed exponential random graph model. arXiv:1404.6514[math.PR]. (2014)

  4. Asselah, A., Dai Pra, P., Lebowitz, J.L., Mounaix, P.: Diffusion effects on the breakdown of a linear amplifier model driven by the square of a Gaussian field. J. Stat. Phys. 104, 24–32 (1990)

    MathSciNet  Google Scholar 

  5. Black, F., Derman, E., Toy, W.: A one-factor model of interest rates and its application to treasury bond options. Financ. Anal. J. 46, 24–32 (1990)

    Article  Google Scholar 

  6. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  7. Broderix, K., Kree, R.: Thermal equilibrium with the Wiener potential: testing the replica variational approximation. Europhys. Lett. 32, 343 (1995)

    Article  ADS  Google Scholar 

  8. Chatterjee, S., Diaconis, P.: Estimating and understanding exponential random graph models. Ann. Stat. 41, 2428–2461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, J.E., Newman, C.M.: The stability of large random matrices and their products. Ann. Probab. 12, 283–310 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Comtet, A., Monthus, C.: On the flux distribution in a one-dimensional disordered system. J. Phys. I 4, 635 (1994)

    MATH  Google Scholar 

  11. Comtet, A., Monthus, C., Yor, M.: Exponential functionals of Brownian motion and disordered systems. J. Appl. Prob. 35, 255–271 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  13. Dufresne, D.: The integral of geometric Brownian motion. Adv. Appl. Prob. 33, 223–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dufresne, D.: The log-normal approximation in financial and other computations. Adv. Appl. Prob. 36, 747–773 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics (Classics in Mathematics). Springer, New York (2005)

    Google Scholar 

  16. Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Prob. 1, 126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kadanoff, L.P.: Statistical Physics: Statics, Dynamics and Renormalization. World Scientific, Singapore (2000)

    Book  Google Scholar 

  18. Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane–Emden equation. J. Stat. Phys. 29, 561 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. Mèzard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  21. Lebowitz, J., Penrose, O.: Rigorous treatment of the van der Waals–Maxwell theory of the liquid–vapor transition. J. Math. Phys. 7, 98 (1966)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Lewontin, R.C., Cohen, D.: On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA 62, 1056 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Mikosh, T., Samorodnitsky, G., Tafakori, L.: Fractional moments of solutions to stochastic recurrence equations. J. Appl. Prob. 50, 969–982 (2013)

    Article  Google Scholar 

  24. Mitzenmacher, M.: A brief history of generative models for power law and log-normal distributions. Internet Math. 1, 226–251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mounaix, P., Collet, P., Lebowitz, J.L.: Propagation effects on the breakdown of a linear amplifier model: complex-mass Schrödinger equation driven by the square of a Gaussian field. Commun. Math. Phys. 264, 741–758 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Pirjol, D.: Emergence of heavy tailed distributions in a random multiplicative model driven by a Gaussian stochastic process. J. Stat. Phys. 154, 781–806 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Pirjol, D.: Long term growth rate in a random multiplicative model. J. Math. Phys. 55, 083305 (2014)

    Article  ADS  Google Scholar 

  28. Radin, C., Yin, M.: Phase transitions in exponential random graphs. Ann. Appl. Prob. 23, 2458–2471 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruelle, D.: Analyticity properties of the characteristic exponents of random matrix products. Adv. Math. 32, 68–80 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roitershtein, A.: One-dimensional linear recursions with Markov-dependent coefficients. Ann. Appl. Prob. 17, 572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. DeSaporta, B.: Tail of the stationary solution of the stochastic equation \(Y_{n+1}=a_nY_n+b_n\) with Markovian coefficients. Stoch. Proc. Appl. 115, 1954 (2005)

    Article  MathSciNet  Google Scholar 

  32. Sornette, D., Cont, R.: Convergent multiplicative processes repelled from zero: power laws and truncated power laws. J. Phys. I 7, 431 (1997)

    Google Scholar 

  33. Stanley, E.H.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1987)

    Google Scholar 

  34. Varadhan, S.R.S.: Large Deviations and Applications. SIAM, Philadelphia (1984)

    Book  Google Scholar 

  35. Vervaat, W.: On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Prob. 11, 750–783 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yor, M.: On some exponential functions of Brownian motion. Adv. Appl. Prob. 24, 509–531 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Editor and two anonymous referees for useful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Pirjol.

Appendices

Appendix 1: Solution of the Euler–Lagrange Equation

We present in this Appendix the solution of the Euler–Lagrange Eq. (69) for \(h(y)\). It is useful to introduce the notation

$$\begin{aligned} V(h) = 2\beta \log (1 + e^h). \end{aligned}$$
(164)

In terms of this function, the Eq. (69) is written as

$$\begin{aligned} h''(y) = - V'(h(y)), \end{aligned}$$
(165)

which is analogous to Newton’s law for a particle moving in the potential \(V(h)\). Written in this form, it is easy to check that the following combination is a constant of motion of the Eq. (69)

$$\begin{aligned} E = \frac{1}{2} (h'(y))^2 + V(h(y)) = V(h(1)). \end{aligned}$$
(166)

The value of the constant of motion was determined from the boundary condition (70) at \(y=1\) as \(E = V(h(1))\).

The relation (166) will be useful to express \(h'(y)\) in terms of \(h(y)\). In particular, we can use it to write

$$\begin{aligned} \frac{dy}{dh} = \frac{1}{\sqrt{2(E-V(h(y)))}} = \frac{1}{2\sqrt{\beta }} \frac{1}{\sqrt{\log \frac{1+e^{h(1)}}{1+e^h}}}. \end{aligned}$$
(167)

Integrating this relation over \(h\) from \(h(0)\) to \(h(1)\) we get an equation for \(h(1)\)

$$\begin{aligned} 1 = \frac{1}{2\sqrt{\beta }} \int _{h(0)=\log \rho }^{h(1)} \frac{dx}{\sqrt{\log \frac{1+e^{h(1)}}{1+e^x}}}. \end{aligned}$$
(168)

Thus we can find \(h(1)\) by solving the equation

$$\begin{aligned} F(h(1);\rho ) \equiv \int _{\log \rho }^{h(1)} \frac{dx}{\sqrt{ \log \frac{1+e^{h(1)}}{1+e^x}}} = 2\sqrt{\beta }, \end{aligned}$$
(169)

Once \(h(1)\) is found, the complete shape of the function \(h(y)\) can be determined by solving the equation

$$\begin{aligned} \int _{\log \rho }^{h(y)} \frac{dx}{\sqrt{ \log \frac{1+e^{h(1)}}{1+e^x}}} = 2\sqrt{\beta } y. \end{aligned}$$
(170)

As the next step in the solution of the variational problem we would like to compute the functional \(\varLambda [f]\) corresponding to a solution \(f(x)\) of the Euler–Lagrange equation (62) with boundary condition (63). If the Euler–Lagrange equation has a unique solution \(f(y)\), then \(\lambda (\rho ,\beta ) = \varLambda [f]\). However, if it has several solutions, as is the case around the phase transition, the Lyapunov exponent is given by the supremum of \(\varLambda [f]\) over these multiple solutions

$$\begin{aligned} \lambda (\rho ,\beta ) = \text{ sup }_{f} \varLambda [f]. \end{aligned}$$
(171)

The main result is summarized in Proposition 5. We present here the proof of this result.

Proof

We start by expressing the functional \(\varLambda [f]\) in a simpler form as

$$\begin{aligned} \varLambda [f] = \frac{1}{2} \log \rho \int _0^1 dx f(x) - \frac{1}{2} \int _0^1 dx f(x) \log \frac{f(x)}{1-f(x)} - \int _0^1 dx \log (1-f(x)). \end{aligned}$$
(172)

This is obtained by eliminating the double integral over \(K(z,y)\) using the Euler–Lagrange equation (59). Multiplying this equation with \(f(y)\) and integrating over \(y\), this allows us to solve for the double integral. Substituting into (58) gives the result above.

There are three integrals appearing in \(\varLambda [f]\). We will show next that their sum can be expressed in terms of \(h(1)\) alone. We consider them in turn.

The first integral is related to \(f'(0)\) as

$$\begin{aligned} f'(0) = 2\beta f(0)(1-f(0)) \int _0^1 dz f(z) = \frac{2\beta \rho }{(1+\rho )^2} \int _0^1 dz f(z). \end{aligned}$$
(173)

This is obtained by taking \(y=0\) in (61). This is uniquely determined by \(h(1)\), as can be seen from Eq. (166)

$$\begin{aligned} \frac{1}{2} (h'(y))^2 + V(h(y)) = V(h(1)) \end{aligned}$$
(174)

and thus \(h'(y) = \sqrt{2(V(h(1)) - V(h(y))} = 2\sqrt{\beta } \sqrt{\log \frac{1+e^{h(1)}}{1+e^{h(y)}}}\). Taking here \(y=0\) we can express \(h'(0)\) in terms of \(h(1)\). As a result we have

$$\begin{aligned} I_0 = \int _0^1 dx f(x) = \frac{1}{2\beta } h'(0) = \frac{1}{\sqrt{\beta }} \sqrt{\log \frac{1+e^{h(1)}}{1+\rho }}. \end{aligned}$$
(175)

The second integral in \(\varLambda [f]\) is

$$\begin{aligned} I_1&=\int _0^1 dx f(x) \log \frac{f(x)}{1-f(x)} = \int _0^1 dx h(x) \frac{e^{h(x)}}{1+e^{h(x)}}\nonumber \\&= -\frac{1}{2\beta } \int _0^1 dx h(x) h''(x) = \frac{1}{2\beta } \left( \int _0^1 dx (h'(x))^2 + h(0) h'(0) \right) , \end{aligned}$$
(176)

where we integrated by parts in the last step and used \(h'(1) = 0\).

Finally, the third integral is

$$\begin{aligned} I_2&=\int _0^1 dx \log (1-f(x)) = - \int _0^1 dx \log (1 + e^{h(x)})\nonumber \\&= -\frac{1}{2\beta } \int _0^1 dx V(h(x)) = -\frac{1}{2\beta } \int _0^1 dy \left( E - \frac{1}{2} (h'(y))^2 \right) \nonumber \\&= - \log \big (1 + e^{h(1)}\big ) + \frac{1}{4\beta } \int _0^1 dy (h'(y))^{2}, \end{aligned}$$
(177)

where \(V(h)\) is defined in (164). In the second line we used (166) to eliminate \(V(h(y))\) in terms of \((h'(y))^2 = 4\beta \log \frac{1+e^{h(1)}}{1+e^{h(y)}}\).

The integrals \(I_1\) and \(I_2\) appear in \(\varLambda [f]\) in the combination

$$\begin{aligned} \frac{1}{2} I_1 + I_2&= \frac{1}{2\beta } \int _0^1 dx \left\{ \frac{1}{2} (h'(x))^2 - V(h(x)) \right\} + \frac{1}{4\beta } h(0) h'(0) \nonumber \\&= \frac{1}{\sqrt{\beta }} \int _{\log \rho }^{h(1)} dx \sqrt{\log \frac{1+e^{h(1)}}{1+e^x}} - \log \big (1 + e^{h(1)}\big ) + \frac{1}{4\beta } \log \rho h'(0). \end{aligned}$$
(178)

Substituting this into (172) the last term cancels against the term proportional to the integral \(I_0\), and we obtain the result (71). This concludes the proof of (71). \(\square \)

Appendix 2: Analytical Solution for \(\beta d^2 \gg 1\)

We present in this Appendix an analytical solution of the variational problem for \(\varLambda (d)\) in the \(\beta d^2 \rightarrow \infty \) limit. This is used to derive the properties of the phase transition in the same limit, which are summarized in Proposition 6.

We will prove here the following approximation for the functional \(\varLambda (d)\)

$$\begin{aligned}&\varLambda (d) = \beta d^2 - \frac{2}{3}\beta d^3 + d\log \left( \frac{\rho }{1+\rho }\right) + \log (1+\rho )+ o(a^{-1}), \end{aligned}$$
(179)

where \(a = \beta d^2\).

The starting point is the observation that the integral appearing in (76) depends only on the combination \(a=\beta d^2\). We denote it as

$$\begin{aligned} J(a;\rho ) = \int _0^1 \frac{y^2 dy}{1+\rho - e^{a(y^2-1)}} \end{aligned}$$
(180)

We would like to obtain an approximation for this integral for \(a \gg 1\). This is given by the following result.

Lemma 1

The integral \(J(a;\rho )\) has the following expansion for \(a\gg 1\)

$$\begin{aligned} J(a;\rho ) = \frac{1}{1+\rho } \left\{ \frac{1}{3} - \frac{1}{2a} \log \left( \frac{\rho }{1+\rho }\right) + o(a^{-2}) \right\} . \end{aligned}$$
(181)

Proof

This result is shown by proving matching lower and upper bounds for the integral \(J(a;\rho )\). We start by deriving a lower bound for the integral. This bound follows from using the inequality \(y^2 - 1 \ge 2(y-1)\), which holds for any \(y\in (0,1)\), in the exponent in the denominator of the integral (180). Then the integral can be performed exactly with the result

$$\begin{aligned}&J(a;\rho ) \ge \frac{1}{3a^3(1+\rho )} \left\{ a^3 - \frac{3}{2} a^2 \log \left( \frac{\rho }{1+\rho }\right) \right. \nonumber \\&\left. \qquad - \frac{3}{2} a \text{ Li }_2 \left( \frac{1}{1+\rho }\right) + \frac{3}{4} \text{ Li }_3 \left( \frac{1}{1+\rho }\right) - \frac{3}{4} \text{ Li }_3 \left( \frac{e^{-2a}}{1+\rho }\right) \right\} \end{aligned}$$
(182)

Here \(\text{ Li }_n(z)\) denotes the polylogarithm of order \(n\) [1].

For \(\rho \rightarrow 0\) and \(a\gg 1\) the polylogarithms approach constant values

$$\begin{aligned}&\lim _{\rho \rightarrow 0} \text{ Li }_2 \left( \frac{1}{1+\rho }\right) = \frac{\pi ^2}{6} \end{aligned}$$
(183)
$$\begin{aligned}&\lim _{\rho \rightarrow 0} \text{ Li }_3 \left( \frac{1}{1+\rho }\right) = \zeta (3) \simeq 1.202 \end{aligned}$$
(184)
$$\begin{aligned}&\lim _{x \rightarrow 0} \text{ Li }_3 (x) = x + o(x^2). \end{aligned}$$
(185)

We get thus the lower bound

$$\begin{aligned} J(a;\rho ) \ge \frac{1}{3(1+\rho )} -\frac{1}{2a(1+\rho )} \log \left( \frac{\rho }{1+\rho }\right) + o(a^{-2}). \end{aligned}$$
(186)

Next we prove the upper bound for the integral \(J(a;\rho )\)

$$\begin{aligned} J(a;\rho ) \le \frac{1}{1+\rho } \left\{ \frac{1}{3} - \frac{1}{2a} \log \left( \frac{\rho }{1+\rho - e^{-a}}\right) \right\} . \end{aligned}$$
(187)

This is obtained by considering the difference

$$\begin{aligned} \frac{1}{1 + \rho - e^{a(y^2-1)}} - \frac{1}{1+\rho } = \frac{1}{(1+\rho )[(1+\rho )e^{a(1-y^2)}-1]} \end{aligned}$$
(188)

Multiplying with \(y^2\) and integrating over \(y:(0,1)\) we have

$$\begin{aligned}&J(a;\rho ) - \frac{1}{3(1+\rho )} \le \frac{1}{1+\rho } \int _0^1 \frac{ydy}{(1+\rho ) e^{a(1-y^2)}-1} \nonumber \\&= -\frac{1}{2a(1+\rho )} \log \left( \frac{\rho }{1+\rho -e^{-a}}\right) < -\frac{1}{2a(1+\rho )} \log \left( \frac{\rho }{1+\rho }\right) . \end{aligned}$$
(189)

This proves the upper bound (187). Comparing with the lower bound (186) we obtain the expansion (181). \(\square \)

The final result (179) follows directly from using the expansion (181) of the integral \(J(a;\rho )\) into the expression for \(\varLambda (d)\).

We use next the approximation (179) to study the solution of the variational problem for \(\varLambda (d)\) for \(\beta \rightarrow \infty \). We would like to find the supremum over \(d\) of the cubic polynomial in (179). This supremum is reached at \(d = 0\) or \(d_* = \frac{1}{2}\Big (1 +\sqrt{1+\frac{2}{\beta }\log \frac{\rho }{1+\rho }}\Big ) > 0\). according to the following condition

$$\begin{aligned} \text{ sup }_d \varLambda (d) = \left\{ \begin{array}{cc} \varLambda (0) = \log (1+\rho ) &{} \text{ if } \beta \le - \frac{8}{3}\log \frac{\rho }{1+\rho } \\ \varLambda (d_*) >\log (1+\rho ) &{} \text{ if } \beta > - \frac{8}{3}\log \frac{\rho }{1+\rho } \\ \end{array} \right. \end{aligned}$$
(190)

The supremum switches branches at the point

$$\begin{aligned} \beta _\mathrm{cr}(\rho ) = - \frac{8}{3}\log \Big (\frac{\rho }{1+\rho }\Big ) \end{aligned}$$
(191)

which thus defines the phase transition curve for \(\beta \rightarrow \infty \). This proves the result (79). As \(\beta \rightarrow \infty \) or equivalently \(\rho \rightarrow 0\), the slope of this curve in \((-\log \rho ,\beta )\) coordinates approaches the value \(8/3\). This is smaller than the slope of the phase transition curve in the mean-field approximation, which is equal to 3.

The values of \(d_1, d_2\) along the phase transition curve approach

$$\begin{aligned} d_1 = 0,\quad d_2 = \frac{3}{4} = 0.75 \end{aligned}$$
(192)

as \(\beta \rightarrow \infty \). This proves the result (78). For \(\beta \gg \beta _\mathrm{cr}(\rho )\), we have \(\lim _{\beta \rightarrow \infty } d = 1_-\) and the Lyapunov exponent becomes

$$\begin{aligned} \lim _{\beta \rightarrow \infty } \lambda (\rho ,\beta ) = \lim _{\beta \rightarrow \infty } \varLambda (d) = \frac{1}{3} \beta + \log \rho . \end{aligned}$$
(193)

This result is in agreement with the large \(\beta \) asymptotic behavior of the Lyapunov exponent proven in Proposition 1, see Eq. (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirjol, D., Zhu, L. On the Growth Rate of a Linear Stochastic Recursion with Markovian Dependence. J Stat Phys 160, 1354–1388 (2015). https://doi.org/10.1007/s10955-015-1280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1280-3

Keywords

Navigation