Skip to main content
Log in

Near-Extreme Eigenvalues and the First Gap of Hermitian Random Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the phenomenon of “crowding” near the largest eigenvalue \(\lambda _\mathrm{max}\) of random \(N \times N\) matrices belonging to the Gaussian Unitary Ensemble of random matrix theory. We focus on two distinct quantities: (i) the density of states (DOS) near \(\lambda _\mathrm{max}\), \(\rho _\mathrm{DOS}(r,N)\), which is the average density of eigenvalues located at a distance \(r\) from \(\lambda _\mathrm{max}\) and (ii) the probability density function of the gap between the first two largest eigenvalues, \(p_\mathrm{GAP}(r,N)\). In the edge scaling limit where \(r = \mathcal{O}(N^{-1/6})\), which is described by a double scaling limit of a system of unconventional orthogonal polynomials, we show that \(\rho _\mathrm{DOS}(r,N)\) and \(p_\mathrm{GAP}(r,N)\) are characterized by scaling functions which can be expressed in terms of the solution of a Lax pair associated to the Painlevé XXXIV equation. This provides an alternative and simpler expression for the gap distribution, which was recently studied by Witte et al. in Nonlinearity 26:1799, 2013. Our expressions allow to obtain precise asymptotic behaviors of these scaling functions both for small and large arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Note that we have corrected a typo appearing in the large \(x\) asymptotic behavior of \(\rho _\mathrm{edge}(x)\) given in Eq. (3.11b) of [32].

  2. The Painlevé II equation with parameter \(\alpha \) reads \(q_{\alpha }''=2q_{\alpha }^3+xq_{\alpha }-\alpha \), see also below in Eq. (62). The Hastings–McLeod solution has the asymptotic behavior \(q_{\alpha }(x) \sim \alpha /x\), for \(x \rightarrow \infty \).

  3. Atypically large fluctuations would correspond to the case where \(r = \mathcal{O}(\sqrt{N})\), which is not studied here.

  4. This was done using the tabulation of \(q(x)\), \(R(x)\) and \(\mathcal{F}_2(x)\) which can be found on the webpage of M. Prähofer: http://www-m5.ma.tum.de/KPZ.

  5. See the remark below Eq. (37) concerning the definition of \(\rho _\mathrm{DOS}(r,N)\) for negative \(r\).

References

  1. Bouchaud, J.-P., Mézard, M.: Universality classes for extreme value statistics. J. Phys. A 30, 7997–8015 (1997)

    Article  ADS  MATH  Google Scholar 

  2. Dean, D.S., Majumdar, S.N.: Extreme value statistics of hierarchically correlated variables: deviation from Gumbel statistics and anomalous persistence. Phys. Rev. E 64, 046121 (2001)

    Article  ADS  Google Scholar 

  3. Le Doussal, P., Monthus, C.: Exact solutions for the statistics of extrema of some random 1D landscapes. Application to the equilibrium and the dynamics of the toy model. Physica A 317, 140–198 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Sabhapandit, S., Majumdar, S.N.: Density of near-extreme events. Phys. Rev. Lett. 98(14), 140201 (2007)

    Article  ADS  Google Scholar 

  5. Fisher, D.S., Huse, D.: Nonequilibrium dynamics of spin glasses. Phys. Rev. B 38, 373–385 (1988)

    Article  ADS  Google Scholar 

  6. Fisher, D.S., Huse, D.: Equilibrium behavior of the spin-glass ordered phase. Phys. Rev. B Condens Matter 38, 386–411 (1988)

    Article  ADS  Google Scholar 

  7. Monthus, C., Le Doussal, P.: Low-temperature properties of some disordered systems from the statistical properties of nearly degenerate two-level excitations. Eur. Phys. J. B 41, 535–548 (2004)

    Article  ADS  Google Scholar 

  8. Monthus, C., Garel, T.: Typical versus averaged overlap distribution in spin-glasses: evidence for the droplet scaling theory. Phys. Rev. B 88, 134204 (2013)

    Article  ADS  Google Scholar 

  9. Omori, F.: On the aftershocks of earthquakes. J. Coll. Sci. Imp. Univ. Tokyo 7, 111–200 (1894)

    Google Scholar 

  10. Vere-Jones, D.: A note on the statistical interpretation of Bath’s Law. Bull. Seismol. Soc. Am. 59, 1535 (1969)

    Google Scholar 

  11. Petersen, A.M., Wang, F., Havlin, S., Stanley, H.E.: Market dynamics immediately before and after financial shocks: quantifying the Omori, productivity, and Bath laws. Phys. Rev. E 82, 036114 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sabhapandit, S., Majumdar, S.N., Redner, S.: Crowding at the front of the Marathon packs. J. Stat. Mech. 2008, L03001 (2008)

  13. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  14. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  15. Brunet, E., Derrida, B.: Statistics at the tip of a branching random walk and the delay of traveling waves. Europhys. Lett. 87, 60010 (2009)

    Article  ADS  Google Scholar 

  16. Brunet, E., Derrida, B.: A branching random walk seen from the tip. J. Stat. Phys. 143, 420–446 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Moloney, N.R., Ozogány, K., Rácz, Z.: Order statistics of \(1/f^\alpha \) signals. Phys. Rev. E 84, 061101 (2011)

    Article  ADS  Google Scholar 

  18. Schehr, G., Majumdar, S.N.: Universal order statistics of random walks. Phys. Rev. Lett. 108, 040601 (2012)

    Article  ADS  Google Scholar 

  19. Majumdar, S.N., Mounaix, P., Schehr, G.: Exact statistics of the gap and time interval between the first two maxima of random walks and Lévy flights. Phys. Rev. Lett. 111, 070601 (2013)

    Article  ADS  Google Scholar 

  20. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, Boston (1991)

  21. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  22. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Tracy, C.A., Widom, H.: On the orthogonal and symplectic ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Dieng, M., Tracy, C.A.: Application of random matrix theory to multivariate statistics. In: Harnad, J. (ed.) Random Matrices, Random Processes and Integrable Systems. Springer, New York (2011)

  25. M. Dieng. Preprint. arxiv:0506586

  26. Gustavsson, S.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré, Probab. Stat. 41, 151–178 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. O’Rourke, S.: Gaussian fluctuations of eigenvalues in Wigner random matrices. J. Stat. Phys. 138, 1045–1066 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Witte, N.S., Bornemann, F., Forrester, P.J.: Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles. Nonlinearity 26, 1799–1822 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Pakes, A.G., Steutel, F.W.: On the number of records near the maximum. Aust. J. Stat. 39, 179–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pakes, A.G., Li, Y.: Limit laws for the number of near maxima via the Poisson approximation. Stat. Probab. Lett. 40, 395–401 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Perret, A., Comtet, A., Majumdar, S.N., Schehr, G.: Near-extreme statistics of Brownian motion. Phys. Rev. Lett. 111, 240601 (2013)

  32. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402(3), 709–728 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Bowick, M., Brézin, E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Lett. B 268, 21–28 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. Eisler, V., Rácz, Z.: Full counting statistics in a propagating quantum front and random matrix spectra. Phys. Rev. Lett. 110, 060602 (2013)

    Article  ADS  Google Scholar 

  35. Majumdar, S.N., Schehr, G., Villamaina, D., Vivo, P.: Large deviations of the top eigenvalue of large Cauchy random matrices. J. Phys. A 46, 022001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nadal, C., Majumdar, S.N.: A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix. J. Stat. Mech. 1101, P04001 (2011)

  37. Witte, N.S., Forrester, P.J.: On the variance of the index for the Gaussian unitary ensemble. Random Matrices Theory Appl. 1(4), 1250010 (2012)

  38. Akemann, G., Atkin, M.: Higher order analogues of Tracy-Widom distributions via the Lax method. J. Phys. A 46, 015202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Atkin, M., Zohren, S.: Instantons and extreme value statistics of random matrices. Preprint. arXiv: 1307.3118

  40. Claeys, T., Kuijlaars, A.B.J.: Universality in unitary random matrix ensembles when the soft edge meets the hard edge. In: Integrable Systems and Random Matrices. Contemporary Mathematics, vol. 458, pp. 265–279. American Mathematical Society, Providence (2008)

  41. Borodin, A., Soshnikov, A.: Janossy densities I. Determinantal ensembles. J. Stat. Phys. 113, 595–610 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rider, B., Zhou, X.: Janossy densities for unitary ensembles at the spectral edge. Int. Math. Res. Not. IMRN (13):Art. ID rnn037, 51 (2008)

  43. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, VYu.: Painlevé transcendents: the Riemann–Hilbert Approach. In: Mathematical Surveys and Monographs, vol. 128. American Mathematical Society, Providence (2006)

  44. Periwal, V., Shevitz, D.: Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett. 64, 1326–1329 (1990)

    Article  ADS  Google Scholar 

  45. Gross, D.J., Matytsin, A.: Instanton induced large \(N\) phase transitions in two and four dimensional QCD. Nucl. Phys. B 429, 50–74 (1974)

    Article  ADS  Google Scholar 

  46. Schehr, G.: Extremes of N vicious walkers for large N: application to the directed polymer and KPZ interfaces. J. Stat. Phys. 149, 385–410 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

  48. Uvarov, V.B.: Relation between polynomials orthogonal with different weights. Dokl. Akad. Nauk SSSR 126, 33–36 (1959)

    MATH  MathSciNet  Google Scholar 

  49. Uvarov, V.B.: The connection between systems of polynomials that are orthogonal with respect to different distribution functions. USSR Comput. Math. Math. Phys. 9, 25–36 (1969)

    Article  Google Scholar 

  50. Clarkson, P.A., Joshi, N., Pickering, A.: Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach. Inverse Probl. 15, 175–187 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Gambier, B.: Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes. Acta. Math. 33, 1 (1910)

    Article  MathSciNet  Google Scholar 

  52. Tsuda, T., Okamoto, K., Sakai, H.: Folding transformations of the Painlevé equations. Math. Ann. 331, 713 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Gromak, V.I.: Bäcklund transformations of Painlevé equations and their applications. In: Conte, R. (ed.) The Painlevé Property: One Century Later. CRM Series in Mathematical Physics, pp. 687–734, Springer, New York (1999)

  54. Forrester, P.J., Witte, N.S.: The distribution of the first eigenvalues spacing at the hard edge of the Laguerre unitary ensemble. Kyushu J. Math. 61, 457–526 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  55. Baik, J., Buckingham, R., DiFranco, J.: Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function. Commun. Math. Phys. 280, 463–497 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. J. Math. Phys. 53, 083303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  57. Delvaux, S.: The tacnode kernel: equality of Riemann–Hilbert and Airy resolvent formulas. Preprint. arXiv:1211.4845

  58. Majumdar, S.N., Schehr, G.: Top eigenvalue of a random matrix: large deviations and third order phase transition. J. Stat. Mech. P01012 (2014)

Download references

Acknowledgments

We would like to thank S. N. Majumdar for very stimulating discussions and a careful reading of our manuscript. We acknowledge support by ANR grant 2011-BS04-013-01 WALKMAT. G. S. also acknowledges support from Labex PALM (Project RANDMAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Schehr.

Appendices

Appendix 1: Rewriting the Lax System in Terms of Rescaled Variables

In this appendix, we derive two identities relating the Hastings–McLeod solution of Painlevé II with \(\alpha = 0\), denoted by \(q(x)\) (17), and the one with \(\alpha =1/2\), denoted by \(q_{1/2}\) (62). We start with the relation between \(q(x)\) and \(q_{1/2}(x)\) [28, 50]

$$\begin{aligned} q_{1/2}(x) = -2^{-1/3} \frac{q'(-2^{-1/3}x)}{q(-2^{-1/3}x)}. \end{aligned}$$
(123)

By taking the derivative with respect to \(x\) on both sides of Eq. (123), one obtains

$$\begin{aligned} q_{1/2}'(x) = 2^{-2/3} \frac{q''(-2^{-1/3}x)}{q(-2^{-1/3}x)} - 2^{-2/3} \left( \frac{q'(-2^{-1/3}x)}{q(-2^{-1/3}x)}\right) ^2. \end{aligned}$$
(124)

By combining Eqs. (123) and (124), one obtains

$$\begin{aligned} x + 2 q_{1/2}^2(x) + 2 q_{1/2}'(x) = 2^{1/3} \left( 2^{-1/3}x + \frac{q''(-2^{-1/3}x)}{q(-2^{-1/3}x)} \right) . \end{aligned}$$
(125)

Finally, using that \(q(x)\) is solution of the Painlevé II equation (17) one obtains

$$\begin{aligned} q_{1/2}^2(x) + q_{1/2}'(x) + \frac{x}{2} = 2^{1/3} q^2(-2^{-1/3}x). \end{aligned}$$
(126)

We now derive a second identity by considering the following function

$$\begin{aligned} J(x) = - x - 2 q_{1/2}^2(x) + 2 q_{1/2}'(x) . \end{aligned}$$
(127)

It is straightforward to check that \(J(x)\) satisfies

$$\begin{aligned} J'(x) = - 2 q_{1/2}(x) J(x) - 2. \end{aligned}$$
(128)

The solution of the homogenous equation, \(J'(x) = - 2 q_{1/2}(x) J(x)\) is, using (123), \(J(x) = A/q^2(-2^{-1/3}x)\). By varying the constant, one finds the solution of (128) under the form:

$$\begin{aligned} J(x) = \frac{A(x)}{q^{2}(-2^{-1/3})x}, \; A(x) = 2^{4/3} \int _{-2^{-1/3}x}^\infty q^2(u) du \; + \; a, \end{aligned}$$
(129)

where \(a\) is a constant, independent of \(x\). On the other hand, from the large \(x\) behavior \(q_{1/2}(x) \sim 1/(2x)\), one sees that \(J(x)\) in (127) behaves like \(J(x) \sim -x\), when \(x \rightarrow \infty \). This implies that the constant \(a\) in Eq. (129) is \(a=0\). Hence, one obtains a second identity:

$$\begin{aligned}&- q_{1/2}^2(x) + q_{1/2}'(x) -\frac{x}{2} = -2^{1/3} \frac{\int _{-2^{-1/3}x}^\infty q^2(u) du}{q^2(-2^{-1/3}x)}. \end{aligned}$$
(130)

One can then use these identities (126) and (130) to write the matrix elements of the matrices \(\mathbf{A}\) and \(\mathbf{B}\) in Eq. (68) in terms of \(q(x)\) only—and not \(q_{1/2}(x)\). This yields ultimately, with an appropriate change of variable, the expression of the matrices \({\tilde{\mathbf{A}}}\) and \({\tilde{\mathbf{B}}}\) in Eq. (79).

Appendix 2: Expansion of the Solution of the Lax System for Small \(\tilde{r}\)

In this appendix, we give some details concerning the expansion of \(\tilde{\rho }_\mathrm{edge}(\tilde{r})\) [which is actually similar to the one of \(\tilde{p}_\mathrm{typ}(\tilde{r})\), see Eq. (23)] for small argument \(\tilde{r}\).

1.1 General Structure of the Psi-Functions \(\tilde{f}(\tilde{r},x)\) and \(\tilde{g}(\tilde{r},x)\) at Small \(\tilde{r}\)

The small \(\tilde{r}\) expansion of \(\tilde{\rho }_\mathrm{edge}(\tilde{r})\) necessitates the expansion of the solution of the Lax pair \(\tilde{f}(\tilde{r},x)\) and \(\tilde{g}(\tilde{r},x)\), which we recall are solutions of the system of differential equations

$$\begin{aligned} \frac{\partial }{\partial \tilde{r}} \left( \begin{array}{c} \tilde{f}(\tilde{r},s) \\ \tilde{g}(\tilde{r},s) \end{array} \right) = {\tilde{\mathbf{A}}}\left( \begin{array}{c} f(\tilde{r},s) \\ g(\tilde{r},s) \end{array} \right) , \; \frac{\partial }{\partial s} \left( \begin{array}{c} \tilde{f}(\tilde{r},s) \\ \tilde{g}(\tilde{r},s) \end{array} \right) = {\tilde{\mathbf{B}}}\left( \begin{array}{c} \tilde{f}(\tilde{r},s) \\ \tilde{g}(\tilde{r},s) \end{array} \right) , \; \end{aligned}$$
(131)

where \({\tilde{\mathbf{A}}}\) and \({\tilde{\mathbf{B}}}\) are \(2 \times 2\) matrices given by

$$\begin{aligned} {\tilde{\mathbf{A}}} = \left( \begin{array}{cc} -\frac{q'(s)}{q(s)} &{} 1+q^2(s)/\tilde{r} \\ -\tilde{r}-\frac{\int _s^\infty q^2(u)du}{q^2(s)} &{} \frac{q'(s)}{q(s)} \end{array} \right) , \; {\tilde{\mathbf{B}}} = \left( \begin{array}{cc} \frac{q'(s)}{q(s)} &{} -1 \\ \tilde{r} &{} - \frac{q'(s)}{q(s)} \end{array} \right) ,\; \end{aligned}$$
(132)

where the solutions \(\tilde{f}(r,s)\) and \(\tilde{g}(r,s)\) are characterized by the asymptotic behaviors given in Eq. (80) in the text. We have already shown that \(\tilde{f}(\tilde{r} =0,x)\) exists, and in fact \(\tilde{f}(\tilde{r} =0,x) = 2^{-1/6} \sqrt{\pi } q(x)\) and given the \(\tilde{r}\)-dependence of the matrices \({\tilde{\mathbf{A}}}\) and \({\tilde{\mathbf{B}}}\) one expects that \(\tilde{f}(\tilde{r},x)\) admits the following expansion

$$\begin{aligned} \tilde{f}(\tilde{r},x) = 2^{-1/6} \sqrt{\pi } q(x) + \sum _{n = 1}^\infty \tilde{r}^n \tilde{f}_n(x). \end{aligned}$$
(133)

To obtain the small \(\tilde{r}\) expansion of \(\tilde{g}(\tilde{r},x)\), we show that it can be actually expressed in terms of \(\tilde{f}(\tilde{r},x)\). Using the relation (93) shown in the text, one obtains from (133) that \(\tilde{g}(\tilde{r},x)\) admits the following expansion

$$\begin{aligned} \tilde{g}(\tilde{r},x) = \sum _{n=1}^\infty \tilde{r}^n \tilde{g}_n(x), \; \tilde{g}_n(x) = -\frac{1}{q(x)} \int _x^\infty q(u) \tilde{f}_{n-1}(u) \; du, \;\; n \ge 1. \end{aligned}$$
(134)

By injecting the expansion of \(\tilde{f}(\tilde{r},x)\) (133) into the ‘\(\tilde{\mathbf B}\)-equation’ satisfied by \(\tilde{f}(\tilde{r},x)\) [see Eqs. (131), (132)] one finds the following equations

$$\begin{aligned}&\partial _x \tilde{f}_k(x) = \frac{q'(x)}{q(x)} \tilde{f}_k(x) - \tilde{g}_k(x), \end{aligned}$$
(135)

where \(\tilde{g}_k(x)\) defined in Eq. (134) can be expressed in terms of \(\tilde{f}_{k-1}(x)\). Hence this set of equations (135) can be solved iteratively for successive values of \(k\), starting from \(k=1\), to yield the first functions given in Eq. (100) in the text.

1.2 Lowest Order Expansion: Calculation of the Integral \(a_2\)

In this section of Appendix, we show that the amplitude \(a_2\) defined through the rather complicated integral [see Eq. (103) in the text]

$$\begin{aligned} a_2 = \int _{-\infty }^\infty \left[ (q' + q R)^2 - \frac{1}{4}(q^2- R^2)^2 \right] \mathcal{F}_2 dx, \end{aligned}$$
(136)

has actually a very simple expression, namely \(a_2 = 1/2\). First we recall that

$$\begin{aligned} R(x) = \int _{x}^\infty q^2(u) \;du = \frac{\mathcal{F}'_2(x)}{\mathcal{F}_2(x)}. \end{aligned}$$
(137)

This identity (137) is the crucial one as it allows us to compute this integral in (136), by using successive integration by parts. To this purpose, we first expand the squares in the integrand in (136) and decompose it as

$$\begin{aligned}&a_2 = \int _{-\infty }^\infty \left( q'^2 - \frac{1}{4}q^4 \right) \mathcal{F}_2 \;dx + J_1 + J_2 + J_3, \end{aligned}$$
(138a)
$$\begin{aligned}&J_1 = 2 \int _{-\infty }^\infty q q' R \mathcal{F}_2 \;dx = 2 \int _{-\infty }^\infty q q' \mathcal{F}'_2 \;dx, \end{aligned}$$
(138b)
$$\begin{aligned}&J_2 = \frac{3}{2} \int _{-\infty }^\infty q^2 R^2 \mathcal{F}_2 \;dx = \frac{3}{2} \int _{-\infty }^\infty q^2 R \mathcal{F}'_2 \;dx, \end{aligned}$$
(138c)
$$\begin{aligned}&J_3 = - \frac{1}{4} \int _{-\infty }^\infty R^4 \mathcal{F}_2 \;dx = - \frac{1}{4} \int _{-\infty }^\infty R^3 \mathcal{F}'_2 \;dx, \end{aligned}$$
(138d)

where we used the shorthand notations \(q\equiv q(x), R\equiv R(x)\) and \(\mathcal{F}_2 \equiv \mathcal{F}_2(x)\). We compute the integral \(J_1\) in (138b) by using an integration by part [integrating \(\mathcal{F}_2'(x)\)], which yields

$$\begin{aligned} J_1 = - 2 \int _{-\infty }^\infty \left( q'^2 + 2 q^4 + x q^2\right) \mathcal{F}_2 \;dx, \end{aligned}$$
(139)

where we have used that \(q(x)\) is solution of the Painlevé II equation (17) as well as the asymptotic behavior of \(\mathcal{F}_2(x)\) for large negative argument (116). Similarly, the integral \(J_2\) in (138c) can be transformed by using a similar integration by part [again integrating \(\mathcal{F}_2'(x)\)]. This yields

$$\begin{aligned} J_2 = \frac{3}{2} \int _{-\infty }^\infty q^4 \mathcal{F}_2 \;dx - \frac{3}{2} J_1 = \int _{-\infty }^\infty \left( 3q'^2 + \frac{15}{2} q^4 + 3 x q^2 \right) \mathcal{F}_2 \;dx. \end{aligned}$$
(140)

The integral \(J_3\) in (138d) can be transformed using the same procedure as

$$\begin{aligned} J_3 = - \frac{J_2}{2} = -\frac{1}{2} \int _{-\infty }^\infty \left( 3q'^2 + \frac{15}{2} q^4 + 3 x q^2 \right) \mathcal{F}_2 \;dx. \end{aligned}$$
(141)

Combining Eqs. (138a)–(141) one obtains

$$\begin{aligned} a_2 = \frac{1}{2} \int _{-\infty }^\infty \left( q'^2 -q^4 - xq^2 \right) \mathcal{F}_2 \;dx. \end{aligned}$$
(142)

Finally, this last integral can be computed exactly by using the identity:

$$\begin{aligned} R(x) = \int _x^\infty q^2(u) \;du = q'^2 - q^4 - xq^2, \end{aligned}$$
(143)

which can be checked easily by taking derivative with respect to \(x\) on both sides, and using that \(q(x)\) is solution of the Painlevé II equation (17). Hence using this identity (143), \(a_2\) in (142) can be computed as

$$\begin{aligned} a_2 = \frac{1}{2} \int _{-\infty }^\infty R(x) \mathcal{F}_2(x) \;dx = \frac{1}{2} \int _{-\infty }^\infty \mathcal{F}'_2(x) \;dx = \frac{1}{2}, \end{aligned}$$
(144)

as given in Eq. (103) in the text.

Appendix 3: Large \(\tilde{r}\) Expansion of \(\tilde{p}_\mathrm{typ}(\tilde{r})\): Beyond the Leading Order

In this appendix, we analyze in detail the large \(\tilde{r}\) asymptotic of \(\tilde{p}_\mathrm{typ}(\tilde{r})\). We obtain in particular the first sub-leading corrections to the leading term obtained in the text, in Eq. (118), yielding the rather precise asymptotics for \(\tilde{p}_\mathrm{typ}(\tilde{r})\) given in Eq. (119).

This expansion, beyond leading order, requires the determination of the first correction, of order \(\mathcal{O}(\tilde{r}^{-1/2})\) to the asymptotic behavior of \(\tilde{f}(-\tilde{r},x)\), for large \(\tilde{r}\), given in Eq. (110), which we first focus on. We expect, from (110), the following asymptotic behavior valid for large \(\tilde{r}\):

$$\begin{aligned} \tilde{f}(-\tilde{r}, x) = \frac{1}{2^{7/6}} \tilde{r}^{-1/4} e^{-\frac{2}{3}\tilde{r}^{2/3} - x \sqrt{\tilde{r}}} \left( 1 + \frac{1}{\sqrt{\tilde{r}}} F_1(x) + o(\tilde{r}^{-1/2}) \right) . \end{aligned}$$
(145)

To compute the function \(F_1(x)\), we use that \(\tilde{f}(-\tilde{r},x)\) satisfies the following Schrödinger equation

$$\begin{aligned} \partial _x^2 \tilde{f}(-\tilde{r},x) - (x+2q^2(x))\tilde{f}(-\tilde{r},x) = \tilde{r} \tilde{f}(-\tilde{r},x). \end{aligned}$$
(146)

By injecting the asymptotic expansion (145) into Eq. (146), one obtains \(F_1(x)\) as

$$\begin{aligned} F_1(x) = -\frac{1}{2} \int _{-\infty }^x \left[ u + 2q^2(u)\right] \;du, \end{aligned}$$
(147)

where we have used that \(\lim _{x \rightarrow -\infty }F_1(x) = 0\). Although this is a reasonable assumption we have not been able to establish it rigorously. In the following, we will need the behavior of \(F_1(x)\) for large negative argument. It can be obtained from the large negative argument of \(q(s)\):

$$\begin{aligned} q(s) = \sqrt{-\frac{s}{2}} \left( 1 + \frac{1}{8s^3} + \mathcal{O}(s^{-6})\right) , \; \mathrm{when \;} s \rightarrow -\infty , \end{aligned}$$
(148)

which yields, for \(F_1(x)\) in (147)

$$\begin{aligned} F_1(x) = -\frac{1}{8x} + o(|x|^{-1}), \; \mathrm{when \;} x \rightarrow -\infty . \end{aligned}$$
(149)

More generally, the analysis of Eq. (146) suggests that \(\tilde{f}(-\tilde{r}, x)\) admits an expansion of the form

$$\begin{aligned} \tilde{f}(-\tilde{r}, x) = \frac{1}{2^{7/6}} \tilde{r}^{-1/4} e^{-\frac{2}{3}\tilde{r}^{2/3} - x \sqrt{\tilde{r}}} \left( 1 + \sum _{n=1}^\infty \frac{1}{\tilde{r}^{n/2}} F_n(x) \right) , \; F_n(x) \underset{x \rightarrow -\infty }{\sim } \alpha _n |x|^{-n}.\nonumber \\ \end{aligned}$$
(150)

Equipped with this asymptotic expansion (150) we can now compute the large \(\tilde{r}\) asymptotics of \(\tilde{p}_\mathrm{typ}(\tilde{r})\) beyond leading order. As this was done in the main text, the starting point of our analysis is the following expression

$$\begin{aligned} \tilde{p}_\mathrm{typ}(\tilde{r}) = \frac{2^{1/3}}{\pi } \int _{-\infty }^\infty \left[ \tilde{f}^2(-\tilde{r},x) -\frac{1}{r^2} q^2(x) \tilde{g}^2(-\tilde{r},x) \right] \mathcal{F}_2(x) \;dx. \end{aligned}$$
(151)

We analyze the first term in (151)—the integral involving \(\tilde{f}^2(-\tilde{r},x)\)—by injecting the large \(\tilde{r}\) expansion obtained above (150). It yields

$$\begin{aligned}&\frac{2^{1/3}}{\pi } \int _{-\infty }^\infty \tilde{f}^2(-\tilde{r},x) \;dx = \frac{1}{4\pi } \frac{1}{\tilde{r}^{1/2}} e^{-\frac{4}{3} \tilde{r}^{3/2}}\nonumber \\&\times \int _{-\infty }^\infty e^{-2 x \sqrt{\tilde{r}}}\left( 1 + \frac{2}{\sqrt{r}} F_1(x) + o(\tilde{r}^{-1/2})\right) \mathcal{F}_2(x) \;dx. \end{aligned}$$
(152)

As we have seen before [see Eq. (117) in the text], the integral over \(x\) in (153) is dominated by the region where \(x < 0\) where, as shown in the main text, one can use the saddle point method. Indeed, as shown previously in (117), the saddle point is reached for \(x^*= 2\sqrt{2} \, \tilde{r}^{1/4}\). It is thus natural to perform the change of variable \(x = u \tilde{r}^{1/4}\) and use the asymptotic behavior of \(F_1(x)\) for large negative argument given in (149) as well as the one for \(\mathcal{F}_2(x)\) [55]:

$$\begin{aligned} \mathcal{F}_2(x) = \tau _2 |x|^{-1/8} e^{-\frac{1}{12} |x|^3} \left( 1 + \frac{3}{2^6 |x|^3} + \mathcal{O}(|x|^{-6}) \right) , \; \tau _2 = 2^{1/24} e^{\zeta '(-1)}, \end{aligned}$$
(153)

to obtain after straightforward (though tedious) manipulations the following expansion:

$$\begin{aligned}&\frac{2^{1/3}}{\pi } \int _{-\infty }^\infty \tilde{f}^2(-\tilde{r},x) \;dx = A \; \exp {\left( -\dfrac{4}{3}\tilde{r}^{3/2} + \dfrac{8}{3}\sqrt{2}\tilde{r}^{3/4}\right) }{\tilde{r}^{-{21}/{32}}}\nonumber \\&\qquad \times \,\left( 1 + \dfrac{131 \sqrt{2}}{1536} \tilde{r}^{-3/4} + \mathcal{O}(\tilde{r}^{-3/2})\right) , \end{aligned}$$
(154)

with \(A = 2^{-91/48} e^{\zeta '(-1)}/\sqrt{\pi }\).

We now analyze the second term in Eq. (151), which involves \(\tilde{g}(-\tilde{r},x)\) that does not contribute to leading order when \(\tilde{r} \rightarrow \infty \). To analyze this term, it is sufficient to expand \(\tilde{g}(-\tilde{r},x)\) using Eq. (110) as well as \(\mathcal{F}_2(x)\) using Eq. (153) to leading order. One can then perform a large \(\tilde{r}\) expansion of this term using again the saddle point method, as shown in the main text (117). One obtains, after some manipulations:

$$\begin{aligned} -\frac{2^{1/3}}{\pi \tilde{r}^2} \int _{-\infty }^\infty \left[ q^2(x) \tilde{g}^2(-\tilde{r},x) \right] \mathcal{F}_2(x) \;dx&= A \; \exp {\left( -\dfrac{4}{3}\tilde{r}^{3/2} + \dfrac{8}{3}\sqrt{2}\tilde{r}^{3/4}\right) }{\tilde{r}^{-{21}/{32}}}\nonumber \\&\times \left( -\sqrt{2} \tilde{r}^{-3/4} + \mathcal{O}(\tilde{r}^{-3/2})\right) .\qquad \end{aligned}$$
(155)

Finally, combining these asymptotic expansions (154) and (155) one obtains from (151)

$$\begin{aligned} \tilde{p}_\mathrm{typ}(\tilde{r}) = A \; \exp {\left( -\dfrac{4}{3}\tilde{r}^{3/2} + \dfrac{8}{3}\sqrt{2}\tilde{r}^{3/4}\right) }{\tilde{r}^{-{21}/{32}}} \left( 1 - \dfrac{1405 \sqrt{2}}{1536} \tilde{r}^{-3/4} + \mathcal{O}(\tilde{r}^{-3/2})\right) ,\nonumber \\ \end{aligned}$$
(156)

as announced in the text in Eq. (119).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perret, A., Schehr, G. Near-Extreme Eigenvalues and the First Gap of Hermitian Random Matrices. J Stat Phys 156, 843–876 (2014). https://doi.org/10.1007/s10955-014-1044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1044-5

Keywords

Navigation