Skip to main content
Log in

The Eight-Vertex Model and Lattice Supersymmetry

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the XYZ spin chain along the special line of couplings J x J y +J x J z +J y J z =0 possesses a hidden \(\mathcal{N}=(2,2)\) supersymmetry. This lattice supersymmetry is non-local and changes the number of sites. It extends to the full transfer matrix of the corresponding eight-vertex model. In particular, it is shown how to derive the supercharges from Baxter’s Bethe ansatz. This analysis leads to new conjectures concerning the ground state for chains of odd length. We also discuss a correspondence between the spectrum of this XYZ chain and that of a manifestly supersymmetric staggered fermion chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter, R.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Baxter, R.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors. Ann. Phys. 76, 1–24 (1973)

    Article  ADS  Google Scholar 

  3. Baxter, R.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model. Ann. Phys. 76, 25–47 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  4. Baxter, R.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. III. Eigenvectors of the transfer matrix and Hamiltonian. Ann. Phys. 76, 48–71 (1973)

    Article  ADS  Google Scholar 

  5. Baxter, R.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  6. Baxter, R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 323–337 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  7. Baxter, R.J.: Completeness of the Bethe ansatz for the six and eight-vertex models. J. Stat. Phys. 108, 1–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bazhanov, V.V., Mangazeev, V.V.: Eight-vertex model and non-stationary Lamé equation. J. Phys. A, Math. Gen. 38, L145–L153 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bazhanov, V.V., Mangazeev, V.V.: The eight-vertex model and Painlevé VI. J. Phys. A, Math. Gen. 39, 12235–12243 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Beccaria, M., de Angelis, G.F.: Exact ground state and finite-size scaling in a supersymmetric lattice model. Phys. Rev. Lett. 94, 100401 (2005)

    Article  ADS  Google Scholar 

  11. Beisert, N.: The su(2|3) Undynamic spin chain. Prog. Theor. Phys. Suppl. 177, 1–11 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Bernard, D., LeClair, A.: Quantum group symmetries and non-local currents in 2D QFT. Commun. Math. Phys. 142, 99–138 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  13. Bernard, D., LeClair, A.: The fractional supersymmetric sine-Gordon models. Phys. Lett. B 247, 309–316 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  14. Blom, L., Nienhuis, B.: (2012, to be published)

  15. Cantini, L., Sportiello, A.: Proof of the Razumov-Stroganov conjecture. arXiv:1003.3376

  16. Cecotti, S., Fendley, P., Intriligator, K., Vafa, C.: A new supersymmetric index. Nucl. Phys. B 386, 405–452 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  17. de Gier, J., Batchelor, M.T., Nienhuis, B., Mitra, S.: The XXZ spin chain at Δ=−1/2: Bethe roots, symmetric functions, and determinants. J. Math. Phys. 43, 4135–4146 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Deguchi, T.: Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix. J. Phys. A, Math. Gen. 35, 879 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Deguchi, T., Fabricius, K., McCoy, B.M.: The sl 2 loop algebra symmetry of the six-vertex model at roots of unity. J. Stat. Phys. 102, 701–736 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Di Francesco, P.: A refined Razumov-Stroganov conjecture. J. Stat. Mech. 8, 9 (2004)

    Google Scholar 

  21. Di Francesco, P.: A refined Razumov-Stroganov conjecture: II. J. Stat. Mech. 11, 4 (2004)

    Google Scholar 

  22. Di Francesco, P., Zinn-Justin, P.: Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule. Electron. J. Comb. 12, R6 (2005)

    Google Scholar 

  23. Di Francesco, P., Zinn-Justin, P., Zuber, J.: Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain. J. Stat. Mech. 8, 11 (2006)

    Google Scholar 

  24. Dorey, P., Suzuki, J., Tateo, R.: Finite lattice Bethe ansatz systems and the Heun equation. J. Phys. A, Math. Gen. 37, 2047–2062 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Fabricius, K., McCoy, B.M.: Evaluation parameters and Bethe roots for the six vertex model at roots of unity. In: Kashiwara, M., Miwa, T. (eds.) MathPhys Odyssey 2001. Prog. Math. Phys. vol. 23, p. 119. Birkhäuser, Basel (2002)

    Chapter  Google Scholar 

  26. Fabricius, K., McCoy, B.M.: New developments in the eight vertex model. J. Stat. Phys. 111, 323–337 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fabricius, K., McCoy, B.M.: New developments in the eight vertex model II. Chains of odd length. J. Stat. Phys. 120, 37–70 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Fabricius, K., McCoy, B.M.: An elliptic current operator for the eight-vertex model. J. Phys. A, Math. Gen. 39, 14869–14886 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Fendley, P., Hagendorf, C.: Exact and simple results for the XYZ and strongly interacting fermion chains. J. Phys. A, Math. Theor. 43, 402,004 (2010)

    Article  MathSciNet  Google Scholar 

  30. Fendley, P., Hagendorf, C.: Ground-state properties of a supersymmetric fermion chain. J. Stat. Mech. 1102, P02014 (2011)

    Article  Google Scholar 

  31. Fendley, P., Nienhuis, B., Schoutens, K.: Lattice fermion models with supersymmetry. J. Phys. A, Math. Gen. 36, 12399–12424 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Fendley, P., Schoutens, K., de Boer, J.: Lattice models with N=2 supersymmetry. Phys. Rev. Lett. 90, 120,402 (2003)

    Article  Google Scholar 

  33. de Gier, J., Nichols, A., Pyatov, P., Rittenberg, V.: Magic in the spectra of the XXZ quantum chain with boundaries at Δ=0 and Δ=−1/2. Nucl. Phys. B 729, 387–418 (2005)

    Article  ADS  MATH  Google Scholar 

  34. Hagendorf, C.: (2012, in preparation)

  35. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  36. Huijse, L.: A supersymmetric model for lattice fermions. Ph.D. thesis, Universiteit van Amsterdam (2010)

  37. Huijse, L.: Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D. J. Stat. Mech. P04004 (2011)

  38. Huijse, L., Moran, N., Vala, J., Schoutens, K.: Exact ground states of a staggered supersymmetric model for lattice fermions (2011)

  39. Huijse, L., Schoutens, K.: Supersymmetry, lattice fermions, independence complexes and cohomology theory. Adv. Theor. Math. Phys. 14, 643–694 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Kirillov, A.N., Reshetikhin, N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A, Math. Gen. 20, 1565–1585 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  41. Korff, C.: The twisted XXZ chain at roots of unity revisited. J. Phys. A, Math. Gen. 37, 1681 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Luther, A.: Eigenvalue spectrum of interacting massive fermions in one dimension. Phys. Rev. B 14, 2153–2159 (1976)

    Article  ADS  Google Scholar 

  43. Mangazeev, V.V., Bazhanov, V.V.: The eight-vertex model and Painlevé VI equation II: eigenvector results. J. Phys. A, Math. Theor. 43, 085,206 (2010)

    Article  MathSciNet  Google Scholar 

  44. Okamoto, K.: Studies on the Painlevé equations. I: Sixth Painlevé equation PVI. Ann. Mat. Pura Appl. 146, 337–381 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Razumov, A.V., Stroganov, Y.G.: Spin chains and combinatorics. J. Phys. A, Math. Gen. 34, 3185–3190 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Razumov, A.V., Stroganov, Y.G.: Spin chains and combinatorics: twisted boundary conditions. J. Phys. A, Math. Gen. 34, 5335–5340 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Razumov, A.V., Stroganov, Y.G.: Combinatorial nature of ground state vector of O(1) loop model. Theor. Math. Phys. 138, 333–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Razumov, A.V., Stroganov, Y.G.: A possible combinatorial point for the XYZ spin chain. Theor. Math. Phys. 164, 977–991 (2010)

    Article  Google Scholar 

  49. Razumov, A.V., Stroganov, Y.G., Zinn-Justin, P.: Polynomial solutions of qKZ equation and ground state of XXZ spin chain at Δ=−1/2. arXiv:0704.3542

  50. Rosengren, H.: The three-colour model with domain wall boundary conditions (2009). arXiv:0911.0561

  51. Saleur, H.: Geometric lattice models for N=2 supersymmetric theories in two dimensions. Nucl. Phys. B 382, 532–560 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  52. Saleur, H., Warner, N.: Lattice models and N=2 supersymmetry. In: String Theory, Conformal Models and Topological Field Theories. Nato ASI Ser. B. Plenum, New York (1995)

    Google Scholar 

  53. Stone, M., Goldbart, P.M.: Mathematics for Physics: A Guided Tour for Graduate Students. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  54. Stroganov, Y.: The 8-vertex model with a special value of the crossing parameter and the related XYZ chain. In: Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, Kiev 2000. NATO Sci. Ser. II Math. Phys. Chem., vol. 35, pp. 315–319. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  55. Stroganov, Y.: The importance of being odd. J. Phys. A, Math. Gen. 34, L179–L185 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Sutherland, B.: Two-dimensional hydrogen bonded crystals without the ice rule. J. Math. Phys. 11, 3183 (1970)

    Article  ADS  Google Scholar 

  57. Takebe, T.: Bethe ansatz for higher spin eight-vertex models. J. Phys. A, Math. Gen. 28, 6675–6706 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  59. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253–316 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  60. Witten, E., Olive, D.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97–101 (1978)

    Article  ADS  Google Scholar 

  61. Yang, X., Fendley, P.: Non-local spacetime supersymmetry on the lattice. J. Phys. A, Math. Gen. 37, 8937–8948 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Zinn-Justin, P.: Combinatorial point for fused loop models. Commun. Math. Phys. 272, 661–682 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hagendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagendorf, C., Fendley, P. The Eight-Vertex Model and Lattice Supersymmetry. J Stat Phys 146, 1122–1155 (2012). https://doi.org/10.1007/s10955-012-0430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0430-0

Keywords

Navigation