Skip to main content
Log in

On the Distribution of the Wave Function for Systems in Thermal Equilibrium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For a quantum system, a density matrix ρ that is not pure can arise, via averaging, from a distribution μ of its wave function, a normalized vector belonging to its Hilbert space ℋ. While ρ itself does not determine a unique μ, additional facts, such as that the system has come to thermal equilibrium, might. It is thus not unreasonable to ask, which μ, if any, corresponds to a given thermodynamic ensemble? To answer this question we construct, for any given density matrix ρ, a natural measure on the unit sphere in ℋ, denoted GAP(ρ). We do this using a suitable projection of the Gaussian measure on ℋ with covariance ρ. We establish some nice properties of GAP(ρ) and show that this measure arises naturally when considering macroscopic systems. In particular, we argue that it is the most appropriate choice for systems in thermal equilibrium, described by the canonical ensemble density matrix ρβ = (1/Z) exp (−β H). GAP(ρ) may also be relevant to quantum chaos and to the stochastic evolution of open quantum systems, where distributions on ℋ are often used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, S. Goldstein, and J. L. Lebowitz, On the stability of equilibrium states of finite classical systems. J. Math. Phys. 16, 1284–1287 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  2. V. I. Arnol’d and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968).

    MATH  Google Scholar 

  3. M. Berry, Regular and irregular eigenfunctions. J. Phys. A: Math. Gen. 10, 2083–2091 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  4. H.-P. Breuer and F. Petruccione, Open Quantum Systems (Oxford University Press, 2002).

  5. D. C. Brody and L. P. Hughston, The quantum canonical ensemble. J. Math. Phys. 39, 6502–6508 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. Dürr, S. Goldstein and N. Zanghì, Quantum equilibrium and the origin of absolute uncertainty. J. Statist. Phys. 67, 843–907 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. S. Goldstein, Stochastic mechanics and quantum theory. J. Statist. Phys. 47, 645–667 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì, Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006).

    Google Scholar 

  9. S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì, Typicality of the GAP measure. In preparation.

  10. F. Guerra and M. I. Loffredo, Thermal mixtures in stochastic mechanics. Lett. Nuovo Cimento (2) 30, 81–87 (1981).

    Article  MathSciNet  Google Scholar 

  11. R. Haag, D. Kastler, and E. B. Trych-Pohlmeyer, Stability and equilibrium states. Commun. Math. Phys. 38, 173–193 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Hortikar and M. Srednicki, Correlations in chaotic eigenfunctions at large separation. Phys. Rev. Lett. 80(8), 1646–1649 (1998).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Statistical Physics. Volume 5 of Course of Theoretical Physics. Translated from the Russian by E. Peierls and R. F. Peierls (Pergamon, London and Paris, 1959).

    Google Scholar 

  14. J. L. Lebowitz, Boltzmann’s entropy and time’s arrow. Phys. Today 46, 32–38 (1993).

    Google Scholar 

  15. J. L. Lebowitz, Microscopic reversibility and macroscopic behavior: physical explanations and mathematical derivations. In 25 Years of Non-Equilibrium Statistical Mechanics, Proceedings, Sitges Conference, Barcelona, Spain, 1994, in Lecture Notes in Physics, J.J. Brey, J. Marro, J.M. Rubí, and M. San Miguel (eds.) (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  16. J. L. Lebowitz, Microscopic origins of irreversible macroscopic behavior. Physica (Amsterdam) 263A, 516–527 (1999).

    ADS  MathSciNet  Google Scholar 

  17. A. Martin-Löf, Statistical Mechanics and the Foundations of Thermodynamics. Lecture Notes in Physics 101 (Springer, Berlin, 1979).

    Google Scholar 

  18. E. Nelson, Quantum Fluctuations (Princeton University Press, 1985).

  19. S. Popescu, A. J. Short, and A. Winter, The foundations of statistical mechanics from entanglement: Individual states vs. averages. Preprint quant-ph/0511225 (2005).

  20. S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics. Nature Physics 21(11), 754–758 (2006).

    Google Scholar 

  21. D. N. Page, Average entropy of a subsystem. Phys. Rev. Lett. 71(9), 1291–1294 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. E. Schrödinger, The exchange of energy according to wave mechanics. Annalen der Physik (4) 83, 956–968 (1927).

    Google Scholar 

  23. E. Schrödinger, Statistical Thermodynamics., 2nd edn. (Cambridge University Press, 1952).

  24. H. Tasaki, From Quantum dynamics to the canonical distribution: general picture and a rigorous example. Phys. Rev. Lett. 80, 1373–1376 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. D. Urbina and K. Richter, Random wave models. Preprint (2005). To appear.

  26. J. von Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Z. Physik 57, 30–70 (1929).

    Article  ADS  Google Scholar 

  27. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). Translation of Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932).

    MATH  Google Scholar 

  28. J. D. Walecka, Fundamentals of Statistical Mechanics. Manuscript and Notes of Felix Bloch (Stanford University Press, Stanford, CA, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, S., Lebowitz, J.L., Tumulka, R. et al. On the Distribution of the Wave Function for Systems in Thermal Equilibrium. J Stat Phys 125, 1193–1221 (2006). https://doi.org/10.1007/s10955-006-9210-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9210-z

Keywords

Navigation