Skip to main content

Advertisement

Log in

CO2 Capture in Wet and Dry Superbase Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 °C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. 1H and 13C-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, I., Svendsen, H.F.: Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl)-ethanolamine (AEEA) solutions. Ind. Eng. Chem. Res. 46, 5803–5809 (2007)

    Article  CAS  Google Scholar 

  2. McCann, N., Maeder, M., Attalla, M.: Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind. Eng. Chem. Res. 47, 2002–2009 (2008)

    Article  CAS  Google Scholar 

  3. Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009)

    Article  CAS  Google Scholar 

  4. Brennecke, J.F., Gurkan, B.E.: Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1, 3459–3464 (2010)

    Article  CAS  Google Scholar 

  5. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F.: Green processing using ionic liquids and CO2. Nature 399, 28–29 (1999)

    Article  Google Scholar 

  6. Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solution thermodynamics of imidazolium-based ionic liquids and water. J. Phys. Chem. B. 105, 10942–10949 (2001)

    Article  CAS  Google Scholar 

  7. Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B. 106, 7315–7320 (2002)

    Article  CAS  Google Scholar 

  8. Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., Brennecke, J.F.: Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B. 111, 9001–9009 (2007)

    Article  CAS  Google Scholar 

  9. Bates, E.D., Mayton, R.D., Ntai, I., Davis, J.H., Jr.: CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002)

    Article  CAS  Google Scholar 

  10. Zhang, Y., Zhang, S., Lu, X., Zhou, Q., Fan, W., Zhang, X.: Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem. Eur. J. 15, 3003–3011 (2009)

    Article  CAS  Google Scholar 

  11. Gurkan, B.E., de la Fuenta, J.C., Mindrup, E.M., Ficke, L.E., Goodrich, B.F., Price, E.A., Schneider, W.F., Brennecke, J.F.: Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 132, 2116–2117 (2010)

    Article  CAS  Google Scholar 

  12. Gutowski, K.E., Maginn, E.J.: Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. J. Am. Chem. Soc. 130, 14690–14704 (2008)

    Article  CAS  Google Scholar 

  13. Zhang, J., Zhang, S., Dong, K., Zhang, Y., Shen, Y., Lv, X.: Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem. Eur. J. 12, 4021–4026 (2006)

    Article  CAS  Google Scholar 

  14. Goodrich, B.F., de la Fuente, J.C., Gurkan, B.E., Zadigian, D.J., Price, E.A., Huang, Y., Brennecke, J.F.: Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind. Eng. Chem. Res. 50, 111–118 (2011)

    Article  CAS  Google Scholar 

  15. Goodrich, B.F., de la Fuente, J.C., Gurkan, B.E., Lopez, Z.K., Price, E.A., Huang, Y., Brennecke, J.F.: Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J. Phys. Chem. B. 115, 9140–9150 (2011)

    Article  CAS  Google Scholar 

  16. Wang, C., Luo, H., Jiang, D.-E., Li, H., Dai, S.: Carbon dioxide capture by superbase-derived protic ionic liquids. Angew. Chem. Int. Ed. 49, 5978–5981 (2010)

    Article  CAS  Google Scholar 

  17. Gurkan, B., Goodrich, B.F., Mindrup, E.M., Ficke, L.E., Massel, M., Seo, S., Senftle, T.P., Wu, H., Glaser, M.F., Shah, J.K., Maginn, E.J., Brennecke, J.F., Schneider, W.F.: Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture. J. Phys. Chem. Lett. 1, 3494–3499 (2010)

    Article  CAS  Google Scholar 

  18. Wang, C., Luo, X., Luo, H., Jiang, D.-E., Li, H., Dai, S.: Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew. Chem. Int. Ed. 50, 4918–4922 (2011)

    Article  CAS  Google Scholar 

  19. Wang, C., Luo, H., Li, H., Zhu, X., Yu, B., Dai, S.: Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion. Chem. Eur. J. 18, 2153–2160 (2012)

    Article  CAS  Google Scholar 

  20. Seo, S., Quiroz-Guzman, M., DeSilva, M.A., Lee, T.B., Huang, Y., Goodrich, B.F., Schneider, W.F., Brennecke, J.F.: Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO2 capture. J. Phys. Chem. B. 118, 5740–5751 (2014)

    Article  CAS  Google Scholar 

  21. Luo, X., Guo, Y., Ding, F., Zhao, H., Cui, G., Li, H., Wang, C.: Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions. Angew. Chem. Int. Ed. 53, 7053–7057 (2014)

    Article  CAS  Google Scholar 

  22. Seddon, K.R., Stark, A., Torres, M.-J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  23. McDonald, J.L., Sykora, R.E., Hixon, P., Mirjafari, A., Davis, J.H., Jr.: Impact of water on CO2 capture by amino acid ionic liquids. Environ. Chem. Lett. 12, 201–208 (2014)

    Article  CAS  Google Scholar 

  24. Stevanovic, S., Podgorsek, A., Padua, A.A.H., Costa Gomes, M.F.: Effect of water on the carbon dioxide absorption by 1-alkyl-3-methylimidazolium acetate ionic liquids. J. Phys. Chem. B. 116, 14416–14425 (2012)

    Article  CAS  Google Scholar 

  25. Stevanovic, S., Podgorsek, A., Moura, L., Santini, C.C., Padua, A.A.H., Costa Gomes, M.F.: Absorption of carbon dioxide by ionic liquids with carboxylate anions. Int. J. Greenhouse Gas Control 17, 78–88 (2013)

    Article  CAS  Google Scholar 

  26. Thompson, R.L., Shi, W., Albenze, E., Kusuma, V.A., Hopkinson, D., Damodaran, K., Lee, A.S., Kitchin, J.R., Luebke, D.R., Nulwala, H.: Probing the effect of electron donation on CO2 absorbing 1,2,3-triazolide ionic liquids. RSC Adv. 4, 12748–12755 (2014)

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 09, Revision C 01. Gaussian Inc., Pittsburgh (2009)

    Google Scholar 

  28. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  29. Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)

    Article  CAS  Google Scholar 

  30. Legault, C.Y.: CYLview, 1.0b, Université de Sherbrooke (2009) (http://www.cylview.org)

Download references

Acknowledgments

This work was carried out as part of the “4CU” programme grant, aimed at sustainable conversion of carbon dioxide into fuels, led by the University of Sheffield and carried out in collaboration with the University of Manchester, Queen’s University Belfast, and University College London. The authors therefore acknowledge gratefully the Engineering and Physical Sciences Research Council (EPSRC) for supporting this work financially (Grant No. EP/K001329/1). CM acknowledges funding from the Department of Employment and Learning. J.J. would like to thank the Royal Society for supporting financially the equipment used during this work (Grant No. RG120168). Supporting data are openly available on Queen’s University Research Portal http://pure.qub.ac.uk/portal/en/datasets.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johan Jacquemin or Christopher Hardacre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, S.F.R., McCrellis, C., McStay, C. et al. CO2 Capture in Wet and Dry Superbase Ionic Liquids. J Solution Chem 44, 511–527 (2015). https://doi.org/10.1007/s10953-015-0319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0319-z

Keywords

Navigation