Skip to main content
Log in

Ultrasonic and Raman Scattering Spectroscopy of Zinc Thiocyanate Complexes in Water at 25C: Kinetics of Complex Formation Determined by Multivariate Analysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Advances have been made recently in broadening the accessible ultrasonic absorption frequency range and improving the detectability of minor species present in solution using Raman spectroscopy. Development of chemometric techniques in these areas needs to keep pace with the improvement of these experimental methods. Refinements in the analysis of ultrasonic and Raman data based on multivariable least squares and factor analysis, respectively, are examined to investigate the kinetics of zinc thiocyanate complex formation in water. Analysis of ultrasonic absorption relaxation spectra verified that the observed process in aqueous Zn(SCN)2 involves substitution of water from the first coordination shell of Zn2+. Use of a multivariable least-squares error surface is described that enhances the reliability of assigned frequencies of ultrasonic absorption maxima. Factor analysis of Raman scattering data provided direct evidence that at least four complex species, such as Zn(SCN)+ and Zn(SCN)2, are simultaneously present in the aqueous zinc thiocyanate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tamura, J. Chem. Phys. 83, 4539 (1985).

    Article  Google Scholar 

  2. R. H. Uibel and J. M. Harris, Anal. Chim. Acta 494, 105 (2003).

    Article  Google Scholar 

  3. L. G. Sillèn and A. E. Martell, in Stability Constants of Metal-Ion Complexes, 2nd edn. (Chemical Society, London, 1964, Supplement No. 1 1971).

    Google Scholar 

  4. S. Ahrland and L. Kullberg, Acta Chim. Scand. 25, 3692 (1971).

    Google Scholar 

  5. Succinctly summarized by J. E. Stuehr, in Investigation of Rates and Mechanisms of Reactions, 4th edn. (Wiley, New York, 1986, p. 291).

  6. R. H. Uibel and J. M. Harris, Appl. Spectrosc. 58, 934 (2004).

    Article  Google Scholar 

  7. M. Delsignore, H. Maaser, and S. Petrucci, J. Phys. Chem. 88, 2405 (1984).

    Article  Google Scholar 

  8. C. Chen, W. Wallace, E. M. Eyring, and S. Petrucci, J. Phys. Chem. 88, 2541 (1984).

    Article  Google Scholar 

  9. S. Gilbert and N. Truong, in Wavelets and Filter Banks, (Wellesley-Cambridge Press, Wellesley MA, 1996, Chapter 1).

    Google Scholar 

  10. G. R. Phillips and E. M. Eyring, Anal. Chem. 60, 738 (1988).

    Article  Google Scholar 

  11. P. R. Bevington, in Data Reduction and Error Analysis for the Physical Sciences, (McGraw-Hill, New York, 1969, p. 144–147).

    Google Scholar 

  12. E. R. Malinowski, in Factor Analysis in Chemistry, 3rd edn. (Wiley, New York, 2002, Chapter 4).

    Google Scholar 

  13. E. R. Malinowski, Chemometrics 1, 33 (1987).

    Article  Google Scholar 

  14. E. R. Malinowski, Chemometrics 4, 102 (2000).

    Google Scholar 

  15. H. Farber and S. Petrucci, in The Chemical Physics of Solvation, Part B, R. R. Dogonadze, E. Kálmán, A. A. Kornyshev, and J. Ulstrup, eds. (Elsevier, New York, 1986, Chapter 5).

    Google Scholar 

  16. U. Kaatze, R. Behrends, and K. Lautscham, Ultrasonics 39, 393 (2001).

    Article  PubMed  Google Scholar 

  17. T. J. Swift and R. E. Connick, J. Chem. Phys. 37, 307 (1962).

    Article  Google Scholar 

  18. T. R. Steagle and C. Langfield, Coord. Chem. Rev. 2, 349 (1967).

    Article  Google Scholar 

  19. M. Eigen and L. DeMaeyer, in Investigation of Rates and Mechanisms of Reactions, 2nd edn., S. L. Friess, E. S. Lewis, and A. Weissberger, eds. (Wiley, New York, 1963, Chapter XVIII, Section 2, Principal Procedures, pp. 924 and 928).

  20. F. Basolo and R. G. Pearson, in Mechanism of Inorganic Reactions, 2nd edn. (Wiley, New York, 1967, p. 152).

    Google Scholar 

  21. F. Fittipaldi and S. Petrucci, J. Phys. Chem. 71, 3414 (1967).

    Article  Google Scholar 

  22. Succinctly summarized by J. E. Stuehr, in Investigation of Rates and Mechanisms of Reactions, 4th edn. (Wiley, New York, 1986, p. 278).

  23. P. Hemmes and S. Petrucci, J. Phys. Chem. 83, 4626 (1969).

    Google Scholar 

  24. G. S. Darbari, M. R. Richardson, and S. Petrucci, J. Chem. Phys. 53, 859 (1970).

    Article  Google Scholar 

  25. K. J. Maynard, D. E. Irish, E. M. Eyring, and S. Petrucci, J. Phys. Chem. 88, 729 (1984).

    Article  Google Scholar 

  26. A. Antic-Jovanovic, M. Jeremic, and S. Kovacevic, Glasnik Hemijskog Drustva Beograd 47, 309 (1982).

    Google Scholar 

  27. S. Sasic, D. Zoric, M. Jeremic, and A. Antic-Jovanovic, Polyhedron 20, 839 (2001).

    Article  Google Scholar 

  28. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, in The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Boston, MA, 1991, p. 112).

    Google Scholar 

  29. P. Gans, in Vibrating Molecules (Chapman and Hall, London, 1971, p. 192).

    Google Scholar 

  30. M. J. Adams, in Chemometrics in Analytical Spectroscopy (Royal Science of Chemistry, Cambridge, 1995, Chapter 4).

    Google Scholar 

  31. M. Otto, Chemometrics: Statistics and Computer Applications in Analytical Chemistry (Wiley-VCH, New York, 1999, Chapter 2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel M. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uibel, R.H., Heider, E.C., Gasser, J.L. et al. Ultrasonic and Raman Scattering Spectroscopy of Zinc Thiocyanate Complexes in Water at 25C: Kinetics of Complex Formation Determined by Multivariate Analysis. J Solution Chem 34, 499–514 (2005). https://doi.org/10.1007/s10953-005-4485-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-4485-2

Key Words

Navigation