Skip to main content
Log in

Control of Both Superconducting Critical Temperature and Critical Current by Means of Electric-Field-Induced Reconfigurable Strain

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The controlled modification of superconductivity by any means is a long-standing issue in low-temperature physics. In this work, we present data on the control of the superconducting properties of conventional low critical-temperature (TC) Nb thin films with thickness (dNb) = 15 and 20 nm under application of reconfigurable strain, S induced by an external electric field, and Eex to a piezoelectric (PE) single crystal, namely (1 − x)Pb(Mg1/3Nb2/3)O3x PbTiO3 (PMN-PT) with x = 0.30–0.31. The experimental results (reduction of TC and critical current (JC) on the order of 6% and 90–100%, respectively) are nicely reproduced with a phenomenological model that incorporates the constitutive relation S(Eex) that describes the electro-mechanical response of the PE crystal to well-established formulas that describe TC and JC of the SC thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the rest of the paper, we set \(k_{\mathrm {B}} = \hbar = 1\) so that energy (E), frequency (ω), and temperature (T) all have the same units.

References

  1. De Gennes, P.G.: Phys. Lett. 23, 10 (1966)

    Article  ADS  Google Scholar 

  2. Deutscher, G., Meunier, F.: Phys. Rev. Lett. 22, 395 (1969)

    Article  ADS  Google Scholar 

  3. Nemes, N.M., Visani, C., Leon, C., Garcia-Hernandez, M., Simon, F., Fehér, T., te Velthuis, S.G.E., Hoffmann, A., Santamaria, J.: Appl. Phys. Lett. 97, 032501 (2010)

    Article  ADS  Google Scholar 

  4. Li, B., Roschewsky, N., Assaf, B.A., Eich, M., Epstein-Martin, M., Heiman, D., Munzenberg, M., Moodera, J.S.: Phys. Rev. Lett. 110, 097001 (2013)

    Article  ADS  Google Scholar 

  5. Stamopoulos, D., Aristomenopoulou, E., Manios, E.: Appl. Phys. Lett. 105, 112602 (2014)

    Article  ADS  Google Scholar 

  6. Olsen, J.L., Bucher, E., Levy, M., Muller, J., Corenzwit, E., Geballe, T.: Rev. Mod. Phys. 36, 168 (1964)

    Article  ADS  Google Scholar 

  7. Struzhkin, V.V., Timofeev, Y.A., Hemley, R.J., Mao, H.-K.: Phys. Rev. Lett. 79, 4262 (1997)

    Article  ADS  Google Scholar 

  8. Chen, X.J., Zhang, H., Habermeier, H.-U.: Phys. Rev. B 65, 144514 (2002)

    Article  ADS  Google Scholar 

  9. Ekin, J.W.: Cryogenics 20, 611 (1980)

    Article  ADS  Google Scholar 

  10. Summers, L.T., Guinan, M.W., Miller, J.R., Hahn, P.A.: IEEE Trans. Mag. 27, 2041 (1991)

    Article  ADS  Google Scholar 

  11. van der Laan, D.C., Haugan, T.J., Barnes, P.N.: Phys. Rev. Lett. 103, 027005 (2009)

    Article  ADS  Google Scholar 

  12. van der Laan, D.C., Ekin, J.W., Douglas, J.F., Clickner, C.C., Stauffer, T.C., Goodrich, L.F.: Supercond. Sci. Technol. 23, 072001 (2010)

    Article  ADS  Google Scholar 

  13. Llordes, A., Palau, A., Gazquez, J., Coll, M., Vlad, R., Pomar, A., Arbiol, J., Guzman, R., Ye, S., Rouco, V., Sandiumenge, F., Ricart, S., Puig, T., Varela, M., Chateigner, D., Vanacken, J., Gutierrez, J., Moshchalkov, V., Deutscher, G., Magen, C., Obradors, X.: Nat. Mater. 11, 329 (2012)

    Article  ADS  Google Scholar 

  14. Thiele, C., Dorr, K., Bilani, O., Rodel, J., Schultz, L.: Phys. Rev. B 75, 054408 (2007)

    Article  ADS  Google Scholar 

  15. Polisetty, S., Echtenkamp, W., Jones, K., He, X., Sahoo, S., Binek, C.: Phys. Rev. B 82, 134419 (2010)

    Article  ADS  Google Scholar 

  16. Cheng, X.Z., Wang, L.X., Dou, X.S., Osada, M., Kimura, H.: Appl. Phys. Lett. 99, 092103 (2011)

    Article  ADS  Google Scholar 

  17. Stamopoulos, D., Zeibekis, M., Zhang, S.J.: J. Appl. Phys. 114, 134309 (2013)

    Article  ADS  Google Scholar 

  18. Stamopoulos, D., Zeibekis, M., Vertsioti, G., Zhang, S.J.: J. Appl. Phys. 116, 084304 (2014)

    Article  ADS  Google Scholar 

  19. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. McMillan, W.L.: Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  21. Allen, P.B., Dynes, R.C.: Phys. Rev. B 12, 905 (1975)

    Article  ADS  Google Scholar 

  22. Carbotte, J.P.: Rev. Mod. Phys. 62, 1027 (1990)

    Article  ADS  Google Scholar 

  23. Abrikosov, A.A.: Sov. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  24. Anderson, P.W.: Phys. Rev. Lett. 9, 309 (1962)

    Article  ADS  Google Scholar 

  25. Kim, Y.B., Hempstead, C.F., Strnad, A.R.: Phys. Rev. Lett. 9, 306 (1962)

    Article  ADS  Google Scholar 

  26. Bean, C.P.: Rev. Mod. Phys. 36, 31 (1964)

    Article  ADS  Google Scholar 

  27. Campbell, A.M., Evetts, J.E.: Adv. Phys. 21, 199 (1972)

    Article  ADS  Google Scholar 

  28. Zhang, S., Li, F.J.: J. Appl. Phys. 114, 031301 (2012)

    Article  ADS  Google Scholar 

  29. Stamopoulos, D, Zhang, S.J.: J. Alloys Comput. 612, 34 (2014)

    Article  Google Scholar 

  30. Stamopoulos, D., Aristomenopoulou, E., Sandim, M.J.R., Sandim, H.R.Z., Pissas, M.: EPJ Web of Conferences 75, 04012 (2014)

    Article  Google Scholar 

  31. Stamopoulos, D., Speliotis, A., Niarchos, D.: Supercond. Sci. Technol. 17, 1261 (2004)

    Article  ADS  Google Scholar 

  32. Savrasov, S.Y., Savrasov, D.Y., Andersen, O.K.: Phys. Rev. Lett. 72, 372 (1994)

    Article  ADS  Google Scholar 

  33. Savrasov, S.Y., Savrasov, D.Y.: Phys. Rev. B 54, 16487 (1996)

    Article  ADS  Google Scholar 

Download references

Funding

One of the authors (M.Z.) acknowledges the A.G. Leventis Foundation for support through a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Stamopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeibekis, M., Zhang, S.J., Pissas, M. et al. Control of Both Superconducting Critical Temperature and Critical Current by Means of Electric-Field-Induced Reconfigurable Strain. J Supercond Nov Magn 31, 3147–3152 (2018). https://doi.org/10.1007/s10948-018-4588-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4588-9

Keywords

Navigation