Skip to main content
Log in

On Local Pairs vs. BCS: Quo Vadis High- T c Superconductivity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Since the discovery of high-temperature superconductivity in cuprates, proposals have been made that pairing may be local, in particular in underdoped samples. Here, we briefly review evidence for local pairs from our experiments on thin films of La 2−x Sr x CuO 4, synthesized by atomic layer-by-layer molecular beam epitaxy (ALL-MBE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cyrot, M., Pavuna, D.: Introduction to Superconductivity and High- Tc Materials. World Scientific, Singapore (1992)

    Book  Google Scholar 

  2. Cooper, L. N., Feldman, D. (eds.): BCS: 50 Years. World Scientific, Singapore (2011)

  3. Phillips, J. C.: Physics of High- Tc Superconductors. Academic, London (1989)

    Google Scholar 

  4. Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  5. Plakida, N. M.: High temperature superconductivity: experiment and theory. Springer, Berlin (1995)

    Book  Google Scholar 

  6. Anderson, P. W.: The theory of superconductivity in the high- Tc cuprates. Princeton University Press, Princeton (1997)

    Google Scholar 

  7. Manske, D.: Theory of Unconventional Superconductors. Cooper-pairing Mediated by Spin Excitations. Springer Tracts in Modern Phys, vol. 202. Springer, Berlin (2004)

  8. Zaanen, J.: Superconductivity—why the temperature is high. Nature 430, 512–513 (2004)

    Article  ADS  Google Scholar 

  9. Lee, P. A., Nagaosa, N., Wen, X. G.: Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    Article  ADS  Google Scholar 

  10. Zaanen, J., Chakravarty, S., Senthil, T., Anderson, P. W., Lee, P., Schmalian, J., Imada, M., Pines, D., Randeria, M., Varma, C., Vojta, M., Rice, M.: Towards a complete theory of high Tc. Nature Phys. 2, 138–143 (2006)

    Article  Google Scholar 

  11. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S., Zaanen, J.: From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015)

    Article  ADS  Google Scholar 

  12. Božović, I.: High-temperature superconductivity: a conventional conundrum. Nat. Phys. 12, 22–24 (2016)

    Article  Google Scholar 

  13. Greiner, M., Regal, C. A., Jin, D. S.: Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    Article  ADS  Google Scholar 

  14. Ries, M. G., Wenz, A. N., Zürn, G., Bayha, L., Boettcher, I., Kedar, D., Murthy, P. A., Neidig, M., Lompe, T., Jochim, S.: Observation of pair condensation in the quasi-2D BEC-BCS crossover. Phys. Rev. Lett. 114, 230401 (2015)

    Article  ADS  Google Scholar 

  15. Sommer, A. T., Cheuk, L. W., Ku, M. J. H., Bakr, W. S., Zwierlein, M. W.: Evolution of fermion pairing from three to two dimensions. Phys. Rev. Lett. 108, 045302 (2012)

    Article  ADS  Google Scholar 

  16. Bollinger, A. T., et al.: Superconductor-insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011)

    Article  ADS  Google Scholar 

  17. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y., Goldman, A. M.: Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107, 027001 (2011). Erratum Phys. Rev. Lett. 107, 039901 (2011)

    Article  ADS  Google Scholar 

  18. Mandrus, D., Forro, L., Kendziora, C., Mihaly, L.: Two-dimensional electron localization in bulk single crystals of Bi2Sr2YxCa1−xCu2O8. Phys. Rev. B 2418(R), 44 (1991)

    Google Scholar 

  19. Semba, K., Matsuda, A.: Superconductor-to-insulator transition and transport properties of underdoped YBa2Cu3Oy crystals. Phys. Rev. Lett. 86, 496 (2001)

    Article  ADS  Google Scholar 

  20. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N., Bozovic, I.: Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8 + δ . Nature 398, 221–223 (1999)

    Article  ADS  Google Scholar 

  21. Bilbro, L. S., et al.: Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298–302 (2011)

    Article  Google Scholar 

  22. Madan, I., et al.: Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy. Sci. Rep. 4, 5656 (2014)

    Article  ADS  Google Scholar 

  23. Grbić, M. S., et al.: Temperature range of superconducting fluctuations above Tc in YBa2Cu3O7−δ single crystals. Phys. Rev. B 144508, 83 (2011)

    Google Scholar 

  24. Emery, V. J., Kivelson, S. A.: Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  Google Scholar 

  25. Uykur, E., Tanaka, K., Masui, T., Miyasaka, S., Tajima, S.: Persistence of the superconducting condensate far above the critical temperature of YBa2(Cu,Zn)3Oy revealed by c-axis optical conductivity measurements for several Zn concentrations and carrier doping levels. Phys. Rev. Lett. 127003, 112 (2014)

    Google Scholar 

  26. Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T., Uchida, S.: Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4. Nature 406, 486–488 (2000)

    Article  ADS  Google Scholar 

  27. Wang, Y. Y., et al.: Onset of the vortex-like Nernst signal above Tc in La2−xSrxCuO4 and Bi2Sr2−yLaCuO6. Phys. Rev. B 64, 224519 (2001)

    Article  ADS  Google Scholar 

  28. Wang, Y., Li, L., Ong, N. P.: Nernst effect in high- Tc superconductors. Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  29. Li, L., et al.: Diamagnetism and Cooper pairing above Tc in cuprates. Phys. Rev. B 81, 054510 (2010)

    Article  ADS  Google Scholar 

  30. Kondo, T., et al.: Point nodes persisting far beyond Tc in Bi2212. Nature Commun. 6, 7699 (2015)

    Article  ADS  Google Scholar 

  31. Božović, I., He, X., Wu, J., Bollinger, A. T.: Dependence of critical temperature in overdoped copper oxides on superfluid density. Nature (2016). in press

Download references

Acknowledgments

The experimental work was done at BNL and was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X.H. is supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Božović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavuna, D., Dubuis, G., Bollinger, A.T. et al. On Local Pairs vs. BCS: Quo Vadis High- T c Superconductivity. J Supercond Nov Magn 30, 731–734 (2017). https://doi.org/10.1007/s10948-016-3638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3638-4

Keywords

Navigation