Skip to main content
Log in

Ergodic dynamics of the coupled quasigeostrophic-flow-energy-balance system

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The authors consider a mathematical model for the coupled atmosphere-ocean system, namely, the coupled quasigeostrophic-flow-energy-balance model. This model consists of the large-scale quasigeostrophic oceanic flow model and the transport equation for oceanic temperature, coupled with an atmospheric energy-balance model. After reformulating this coupled model as a random dynamical system (cocycle property), it is shown that the coupled quasigeostrophic-energy balance fluid system has a random attractor, and under further conditions on the physical data and the covariance of the noise, the system is ergodic, namely, for any observable of the coupled atmosphere-ocean flows, its time average approximates the statistical ensemble average, as long as the time interval is sufficiently long.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold, Random Dynamical Systems, Springer-Verlag, New York (1998).

    MATH  Google Scholar 

  2. F. Chen and M. Ghil, “Interdecadal variability in a hybrid coupled ocean-atmosphere model,” J. Phys. Oceanography, 26, 1561–1578 (1996).

    Article  Google Scholar 

  3. I. D. Chueshov, J. Duan, and B. Schmalfuß, “Probabilistic dynamics of two-layer geophysical flows,” Stoch. Dyn., 1, No. 4, 451–475, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. D. Chueshov and M. Scheutzow, “Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,” J. Dynam. Differential Equations, 13, 355–380 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Crauel and F. Flandoli, “Hausdorff dimension of invariant sets for random dynamical systems,” J. Dynam. Differential Equations, 10, 449–474 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Debussche, “Hausdorff dimension of a random invariant set,” J. Math. Pures Appl., 9, 967–988 (1998).

    MathSciNet  Google Scholar 

  7. T. DelSole and B. F. Farrell, “A stochastically excited linear system as a model for quasigeostrophic turbulence: Analytic results for one-and two-layer fluids,” J. Atmospheric Sci., 52, 2531–2547 (1995).

    Article  Google Scholar 

  8. H. A. Dijkstra, Nonlinear Physical Oceanography, Kluwer Academic, Boston (2000).

    Google Scholar 

  9. J. Duan, H. Gao, and B. Schmalfuß, “Stochastic dynamics of a coupled atmosphere-ocean model,” Stoch. Dyn., 2, No. 3, 357–380 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. Yu. V. Egorov and M. A. Shubin, “Partial differential equations,” in: Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, New York (1991).

    Google Scholar 

  11. F. Flandoli and B. Schmalfuß, “Random attractors for the stochastic 3-D Navier-Stokes equation with multiplicative white noise,” Stochastics Stochastics Rep., 59, 21–45 (1996).

    MathSciNet  MATH  Google Scholar 

  12. H. J. Gao and J. Duan, “Averaging principle for quasi-geostrophic motion under rapidly oscillating forcing,” Appl. Math. Mech., in press.

  13. A. Griffa and S. Castellari, “Nonlinear general circulation of an ocean model driven by wind with a stochastic component,” J. Marine Research, 49, 53–73 (1991).

    Article  Google Scholar 

  14. G. Holloway, “Ocean circulation: Flow in probability under statistical dynamical forcing,” in: S. Molchanov and W. Woyczynski, eds., Stochastic Models in Geosystems, Springer-Verlag (1996).

  15. J.-L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications, Vol. 1, Dunod (1968).

  16. G. R. North and R. F. Cahalan, “Predictability in a solvable stochastic climate model,” J. Atmospheric Sci., 38, 504–513 (1981).

    Article  Google Scholar 

  17. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimension, Cambridge Univ. Press, Cambridge (1992).

    Google Scholar 

  18. G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge (1996).

    MATH  Google Scholar 

  19. B. Schmalfuß, “Invariant attracting sets of nonlinear stochastic differential equations,” in: H. Langer and V. Nollau, eds., ISAM Seminar-Gaußig, Vol. 54, Akademie (1989), pp. 217–228.

  20. B. Schmalfuß, “Long-time behaviour of the stochastic Navier-Stokes equation,” Math. Nachr., 152, 7–20 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Schmalfuß, “A random fixed point theorem and the random graph transformation,” J. Math. Anal. Appl., 225, No. 1, 91–113 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Temam, Navier-Stokes Equation and Nonlinear Functional Analysis, CBMS-NSF Regional Conf. Ser. in Appl. Math., Vol. 66, SIAM, Philadelphia (1983).

    Google Scholar 

  23. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin (1997).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Du.

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 12, No. 6, pp. 67–84, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, A., Duan, J., Gao, H. et al. Ergodic dynamics of the coupled quasigeostrophic-flow-energy-balance system. J Math Sci 151, 2677–2688 (2008). https://doi.org/10.1007/s10948-008-0165-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-008-0165-y

Keywords

Navigation