Skip to main content

Advertisement

Log in

Facile synthesis of γ-Fe2O3@porous carbon materials using an Fe-based metal–organic framework: structure and porosity study

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticle embedded porous carbon composite materials have various uses, including as catalyst supports and adsorbents, because of their good stability and unique porosity. Despite their importance, the synthetic strategies of metal-oxide nanoparticle-embedded porous carbon composites to control their properties have not been widely studied. Here, we present a facile synthesis method for γ-Fe2O3-embedded porous carbon materials via the pyrolysis of Fe-based metal–organic framework (MOF, MIL-100). We found that simple treatment to the starting material (MIL-100) allows control γ-Fe2O3 particle size, chemical composition, porosity, and H2 sorption property of the resulting composite materials. This work presents a synthesis of a series of porous carbon composites from a single MOF by treating further carbon source. This synthetic strategy may provide a clue for synthesis of a variety of composite materials using MOFs for battery electrode and catalyst applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Further experiment using different MOF is presented in electronic supplementary information. Although the porosity was not exactly controlled, we found that the surface area increased as increasing carbon contents. However, we also found that the nature of metal oxide NPs may affect to the porosity of the resulting composite materials.

References

  1. Y. Yürüm, A. Taralp, T.N. Veziroglu, Storage of hydrogen in nanostructured carbon materials. Int. J. Hydrogen Energy 34, 3784–3798 (2009)

    Article  Google Scholar 

  2. P. Serp, J.L. Figueiredo, Carbon Materials for Catalysis (Wiley, New York, 2009)

    Google Scholar 

  3. Y. Yang, K. Chiang, N. Burke, Porous carbon-supported catalysts for energy and environmental applications: a short review. Catal. Today 178, 197–205 (2011)

    Article  CAS  Google Scholar 

  4. N. Daems, X. Sheng, I.F.J. Vankelecom, P.P. Pescarmona, Metal—free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 4085–4110 (2014)

    Article  CAS  Google Scholar 

  5. J. Tang, J. Liu, N.L. Torad, T. Kimura, Y. Yamaguchi, Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9, 305–323 (2014)

    Article  CAS  Google Scholar 

  6. A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43, 4341–4356 (2014)

    Article  CAS  Google Scholar 

  7. N. Yan, X. Zhou, Y. Li, F. Wang, H. Zhong, H. Wang, Q. Chen, Fe2O3 nanoparticles wrapped in multi-walled carbon nanotubes with enhanced lithium storage capability. Scientific Report 3, 3392 (2013)

    Google Scholar 

  8. B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008)

    Article  CAS  Google Scholar 

  9. H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857 (2011)

    Article  CAS  Google Scholar 

  10. S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012)

    Article  CAS  Google Scholar 

  11. S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal–organic framework. Chem. Commun. 48, 7447–7449 (2012)

    Article  CAS  Google Scholar 

  12. J. Hu, H. Wang, Q. Gao, H. Guo, Porous carbons prepared by using metal-organic framework as the precursor for supercapacitor. Carbon 48, 3599–3606 (2010)

    Article  CAS  Google Scholar 

  13. S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 135, 7394–7397 (2013)

    Article  CAS  Google Scholar 

  14. G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C. Chao Li, H. Duan (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO @ZnO quantum dots/C core-shell nanorod arrays on a caebon cloth anode. Adv. Mater. doi:10.1002/adma.201405222

  15. F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26, 6622–6628 (2014)

    Article  CAS  Google Scholar 

  16. J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamaguchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015)

    Article  CAS  Google Scholar 

  17. F. Wei, J. Jiang, G. Yu, Y. Sui, A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20–22 (2015)

    Article  CAS  Google Scholar 

  18. A. Kong, C. Mao, Q. Lin, X. Wei, X. Bu, P. Feng, From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Trans. 44, 6748–6754 (2015). doi:10.1039/c4dt03726j

    Article  CAS  Google Scholar 

  19. K.E. deKrafft, C. Wang, W. Lin, Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 24, 2014–2018 (2012)

    Article  CAS  Google Scholar 

  20. X. Xu, R. Cao, S. Jeong, J. Cho, Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 12, 4988–4991 (2012)

    Article  CAS  Google Scholar 

  21. A. Banerjee, R. Gokhale, S. Bhatnagar, J. Jog, M. Bhardwaj, B. Lefez, B. Hannoyer, S. Ogale, MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J. Mater. Chem. 22, 19694–19699 (2012)

    Article  CAS  Google Scholar 

  22. G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed. 43, 6296–6301 (2004)

    Article  Google Scholar 

  23. P. Tarazona, U. Marini Bettolo Marconi, R. Evans, Phase equilibria of fluid interfaces and confined fluids: non-local versus local density functionals. Mol. Phys. 60, 573–595 (1987)

    Article  CAS  Google Scholar 

  24. C. Lastoskie, K.E. Gubbins, N. Quirke, Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)

    Article  CAS  Google Scholar 

  25. S.H. Yeon, P. Reddington, Y. Gogotsi, J.E. Fischer, C. Vakifahmetoglu, P. Colombo, Carbide-derived-carbons with hierarchical porosity form a preceramic polymer. Carbon 48, 201–210 (2010)

    Article  CAS  Google Scholar 

  26. G.S. Paul, J.H. Kim, M.-S. Kim, K. Do, J. Ko, J.-S. Yu, Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells. ACS Appl. Mater. Interfaces 4, 375–381 (2012)

    Article  CAS  Google Scholar 

  27. B. Fang, J.H. Kim, M.-S. Kim, A. Bonakdarpour, A. Lam, D.P. Wilkinson, J.-S. Yu, Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. J. Mater. Chem. 22, 19031–19038 (2012)

    Article  CAS  Google Scholar 

  28. D.N. Dybtsev, H. Chun, S.H. Yoon, D. Kim, K. Kim, Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 126, 32–33 (2004)

    Article  CAS  Google Scholar 

  29. H. Kim, D.G. Samsonenko, M. Yoon, J.W. Yoon, Y.K. Hwang, J.-S. Chang, K. Kim, Temperature-triggered gate opening for gas adsorption in microporous manganese formate. Chem. Commun. 44, 4697–4699 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Foundation for the Advancement of Science and Creativity (KOFAC) and funded by the Korean Government (MOE). This work was also supported by the Principle Research Program of the Korea Atomic Energy Research Institute. We thank Mr. S. Kim and Y. Song for assistance for the XRD measurement and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minyoung Yoon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Yoon, M. Facile synthesis of γ-Fe2O3@porous carbon materials using an Fe-based metal–organic framework: structure and porosity study. J Porous Mater 22, 1495–1502 (2015). https://doi.org/10.1007/s10934-015-0030-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0030-x

Keywords

Navigation