Skip to main content

Advertisement

Log in

Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs), especially MOF-5, are believed to be promising new porous materials for hydrogen adsorption. A comparative study of material synthesis, characterization and hydrogen adsorption was performed to examine the effects of different synthesis conditions on crystal structure, pore textural property and hydrogen adsorption performance of MOF-5 materials. Three MOF-5 samples synthesized with dimethyl formamide (DFM) as solvent and slightly different procedures have shown similar phase structure and chemical composition, diverse crystal structures, varying pore textural properties and different hydrogen adsorption performance. It was established from the experimental results that higher order of crystallinity in the MOF-5 materials generates better adsorbents with larger crystal size, higher specific surface area, uniform pore size distribution (PSD), larger hydrogen adsorption capacity and faster hydrogen diffusion rate in MOF-5 adsorbents. The best MOF-5 sample synthesized in this work (MOF-5(γ)) has a Langmuir specific surface area of 1157 m2/g; it can adsorb 0.5 wt.% of hydrogen at 77 K and 800 mmHg; and results in hydrogen diffusivity inside MOF-5 crystal of 2.3 × 10−9 cm2/s. The density functional theory reasonably predicts the presence of mesopores and macropores in all three MOF-5 samples synthesized in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a m :

Langmuir equation constant (wt.%)

b :

Langmuir equation constant (mmHg−1)

d c :

Diameter of single crystal of MOF-5 (cm)

D c :

Intracrystalline diffusivity (cm2/s)

k :

Freundlich equation constant

m t :

Adsorbed amount per unit mass of adsorbent at time t (wt.%)

m , m max :

Maximum adsorbed amount per unit mass of adsorbent at t = ∞ (wt.%)

n :

Freundlich equation constant

p, P :

Pressure (mmHg)

P 0 :

Gas saturation pressure at temperature T (mmHg)

q :

Adsorbate concentration in the adsorbent (wt.%)

\( \overline{q} \) :

Average adsorbate concentration in the adsorbent particle (wt.%)

\( q^{'}_{0} \) :

Initial adsorbate concentration in the adsorbent particle (wt.%)

r :

Radius of particle

r c :

Radius of single crystal of MOF-5 (cm)

t :

Time (s)

T :

Absolute temperature (K)

V :

Volume

F :

Helmholtz free energy

N :

Number of molecules

W :

Pore width

ρ(r):

Local density of adsorbate at pore radius r of adsorbent

Ω[ρ(r)]:

Grand potential or grand free energy

μ:

Chemical potential

\( V_{{{\text{ext}}}} (r) \) :

External potential imposed by adsorbent pore wall at a radius r

References

  1. A. Zaluska, L. Zaluski, J.O. Strom-Olsen, Method of fabrication of complex alkali metal hydrides, US patent, 625349B1 (2001)

  2. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377–379 (1997)

    Article  CAS  Google Scholar 

  3. S.H. Jhe, Y.K. Kwon, Phys. Rev. B. 69, 245407 (2004)

    Article  Google Scholar 

  4. J. Weitkamp, M. Fritz, S. Ernst, Int. J. Hydrogen Energy 20, 967–970 (1995)

    Article  CAS  Google Scholar 

  5. M.H.F. Sluiter, H. Adachi, R.V. Belosludov, V.R. Belosludov, Y. Kawazoe, Mater. Trans. 45, 1452–1454 (2004)

    Article  CAS  Google Scholar 

  6. Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Samanscin, Micropor. Mesopor. Mater. 55, 217–230 (2002)

    Article  CAS  Google Scholar 

  7. J.L.C. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed.Engl. 44, 4670–4679 (2005)

    Article  CAS  Google Scholar 

  8. J.L.C. Rowsell O.M. Yaghi, Micropor. Mesopor. Mater. 73, 3–14 (2004)

    Article  Google Scholar 

  9. M. Dinca, A. Daily, Y. Liu, C.M. Brown D.A. Neumann, J.R. Long, J. Am. Chem. Soc. 128, 16876–16883 (2006)

    Article  CAS  Google Scholar 

  10. M.E. Davis, Nature 417, 813–821 (2002)

    Article  CAS  Google Scholar 

  11. S.L. James, Chem. Soc. Rev. 32, 276–288 (2003)

    Article  CAS  Google Scholar 

  12. A.M. Seayad, D.M. Antonelli, Adv. Mater. 16, 765–777 (2004)

    Article  CAS  Google Scholar 

  13. R.Q. Snurr, J.T. Hupp, S.T. Nguyen, AIChE J. 50, 1090–1095 (2004)

    Article  CAS  Google Scholar 

  14. H. Li, M. Eddaoudi, M. O’Keeffe O.M. Yaghi, Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  15. B. Panella, M. Hirscher, Adv. Mater. 17, 538–541 (2005)

    Article  CAS  Google Scholar 

  16. B. Panella, M. Hirscher, H. Putter, U. Muller, Adv Funct Mater. 16, 520–524 (2006)

    Article  CAS  Google Scholar 

  17. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  18. G. Horvath, K. Kawazoe, J. Chem. Eng. Japan. 16, 470–475 (1983)

    Article  CAS  Google Scholar 

  19. L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, Y. Yan, Microporous Mesoporous Mater. 58, 105–114 (2003)

    Article  CAS  Google Scholar 

  20. J. Hafizovic, M. Bjørgen, U. Olsbye, P.D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, J. Am. Chem. Soc. 129, 3612–3620 (2007)

    Article  CAS  Google Scholar 

  21. A. Saito, H.C. Foley, AIChE J. 37, 429–436 (1991)

    Article  CAS  Google Scholar 

  22. H. Park, J.F. Britten, U. Mueller, J.Y. Lee, J. Li, J.B. Parise, Chem. Mater. 19, 1302–1308 (2007)

    Article  CAS  Google Scholar 

  23. X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky, Science 306, 1012–1015 (2004)

    Article  CAS  Google Scholar 

  24. D.M. Ruthven, Principles and Adsorption and Adsorption Processes (Willey Interscience, New York, 1984) pp. 166–175

Download references

Acknowledgement

This work was supported by US Army Research Office through grant W911NF-06-1-0200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, D., Deng, S. & Yang, Z. Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach. J Porous Mater 16, 141–149 (2009). https://doi.org/10.1007/s10934-007-9178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-007-9178-3

Keywords

Navigation