Skip to main content

Advertisement

Log in

Effects of glacier meltwater on the algal sedimentary record of an alpine lake in the central US Rocky Mountains throughout the late Holocene

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The effects of alpine glaciers on the hydrology, physical features, and biogeochemistry of lakes have been investigated over contemporary time scales. However, the influence of these factors on algal communities over longer time scales remains unclear, yet is critical to paleolimnological interpretation of environmental change in alpine regions. We examined sedimentary algal pigments and fossil diatom assemblages in two proximal lakes with equivalent local climates, one glacier-fed and one snow-fed, in the central Rocky Mountains (USA) to determine how glacier meltwater has altered algal records over the last 3,000 years. Differences between the records of the two lakes intensified during the Medieval Climate Anomaly and the Little Ice Age, with the glacier-fed lake exhibiting an overall increase in fossil algal pigment concentrations and greater diatom assemblage turnover. Starting 1,000 years ago, the glacier-fed lake in this study showed evidence of nitrogen enrichment from glacier meltwater, as indicated by increasing relative abundances of Asterionella formosa and, to a lesser extent, Fragilaria crotonensis. Since the Little Ice Age, diatom species richness declined in the glacier-fed lake, and further decreased following the 1950s, while assemblage turnover increased. These results demonstrate that glaciers can strongly alter the algal sedimentary record and should be considered when interpreting high-elevation lake records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson NJ (1989) A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. J Ecol 77:926–946

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

  • Arnett H, Saros JE, Mast MA (2012) A caveat regarding diatom-inferred nitrogen concentration in oligotrophic lakes. J Paleolimnol 47:277–291

    Article  Google Scholar 

  • Barnes RT, Williams MW, Parman JN, Hill K, Caine N (2013) Thawing glacial and permafrost features contribute to nitrogen export from Green Lakes Valley, Colorado Front Range, USA. Biogeochemistry. doi:10.1007/s10533-013-9886-5

    Google Scholar 

  • Baron J, Schmidt T, Hartman M (2009) Climate-induced changes in high elevation stream nitrate. Glob Chang Biol 15:1777–1789

    Article  Google Scholar 

  • Barron JA, Anderson L (2011) Enhanced late Holocene ENSO/PDO expression along the margins of the eastern North Pacific. Quat Int 235:3–12

    Article  Google Scholar 

  • Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Hoboken, pp 527–570

    Google Scholar 

  • Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafreniére MJ, Shock EL, Peters JW, Skidmore M (2011) Diversity, abundance, and potential activity of a nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77:4778–4787

    Article  Google Scholar 

  • Camburn KE, Charles DF (2000) Diatoms of low-alkalinity lakes in the Northeastern United States. Special Publication 18, Academy of Natural Sciences of Philadelphia. Scientific Publication, Philadelphia, Pennsylvania, p 152

  • Carrara PE (1989) Late quaternary glacial and vegetative history of the Glacier National Park Region, Montana. United States Government Printing Office, Denver

    Google Scholar 

  • Chen N, Bianchi TS, McKee BA, Bland JM (2001) Historical trends of hypoxia on the Louisiana shelf: applications of pigments as biomarkers. Org Geochem 32:543–561

    Article  Google Scholar 

  • Conley DJ (1998) An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem 63:39–48

    Article  Google Scholar 

  • Conley DJ, Schelske CL (2001) Biogenic silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal and siliceous indicators, vol 3. Kluwer, Dordrecht

    Google Scholar 

  • Daly GL, Wani F (2005) Organic contaminants in Mountains. Environ Sci Technol 39:385–398

    Article  Google Scholar 

  • Eakins JD, Morrison RT (1978) A new procedure for the determination of lead-210 in lake and marine sediments. Int J Appl Radiat Isotopes 29:531–536

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 5:912–920

    Article  Google Scholar 

  • Fountain AG, Hoffman MJ, Jackson KM, Basagic HJ, Nylen T, Percy D (2007) Digital outlines and topography of the glaciers of the American West. US geological survey open-file report 2006-1340, 23 p

  • Frey KE, McClelland JW, Holmes RM, Smith LC (2007) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res 112:1–10

    Google Scholar 

  • Fritz SC, Anderson NJ (2013) The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49:349–362

    Article  Google Scholar 

  • Furlong ET, Carpenter R (1988) Pigment preservation and remineralization in oxic coastal marine sediments. Geochim Cosmochim Acta 52:87–99

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis—an improved ordination technique. Vegetatio 42:47–58. doi:10.1007/BF00048870

    Article  Google Scholar 

  • Hoagland KD, Peterson CG (1990) Effects of light and wave distribution on vertical zonation of attached microalgae in a large reservoir. J Phycol 26:450–457

    Article  Google Scholar 

  • Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot E, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS One 5:1–12. doi:10.1371/journal.pone.001002

    Article  Google Scholar 

  • Hobbs WO, Vinebrooke RD, Wolfe AP (2011) Biogeochemical responses of two alpine lakes to climate change and atmospheric deposition, Jasper and Banff National parks, Canadian Rocky Mountains. Can J Fish Aquat Sci 68:1480–1494

    Article  Google Scholar 

  • Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334:1545–1548

    Article  Google Scholar 

  • Hurley JP, Armstrong DE (1990) Fluxes and transformations of aquatic pigments in Lake Medota, Wisconsin. Limnol Oceanogr 35:384–398

    Article  Google Scholar 

  • Hylander S, Jephson T, Lebret K, von Einem J, Fagerberg T, Balseiro E, Modenutti B, Souza MS, Laspoumaderes C, Jönsson M, Ljungberg P, Nicolle A, Nilsson PA, Ranaker L, Hansson L (2011) Climate-induced input of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zoo-plankton. J Plankton Res 33:1239–1248

    Article  Google Scholar 

  • Interlandi S, Kilham S (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82:1270–1282

    Article  Google Scholar 

  • Irwin J (1974) Water clarity records from twenty-two New Zealand Lakes. N Z J Mar Fresh 8:223–227

    Article  Google Scholar 

  • Ives JD, Fahey BD (1971) Permafrost occurrence in the Front Range, Colorado Rocky Mountains. J Glaciol 10:105–111

    Google Scholar 

  • Janke JR (2005) The occurrence of alpine permafrost in the Front Range of Colorado. Geomorphology 67:375–389

    Article  Google Scholar 

  • Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282:116–129

    Article  Google Scholar 

  • Karabanov E, Williams D, Kuzmin M, Sideleva V, Khursevich G, Prokopenko A, Solotchina E, Tkachenko L, Fedenya S, Kerber E, Gvozdkov A, Khlustov O, Bezrukova E, Lutnova P, Krapivina S (2004) Ecological collapse of Lake Baikal and Lake Hovsgol ecosystesms during the Last Glacial and consequences for aquatic species diversity. Palaeogeogr Palaeoclimatol Palaeoecol 209:227–243

    Article  Google Scholar 

  • Koenings JP, Burkett RD, Edmundson JM (1990) The exclusion of limnetic cladocera from turbid glacier-meltwater lakes. Ecology 71:57–67

    Article  Google Scholar 

  • Köster D, Pienitz R (2006) Seasonal diatom variability and paleolimnological inferences—a case study. J Paleolimnol 35:395–416

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gartner G, Gerloff J, Heynig H, Mollenhauer D (eds) Sußwasserflora von Mitteleuropa (Freshwater flora of central Europe), vol 2. Gustav Fischer Verlag, Stuttgart, pp 1–4

  • Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127

    Article  Google Scholar 

  • Leavitt PR, Carpenter SR (1990) Regulation of pigment sedimentation by photo-oxidation and herbivore grazing. Can J Fish Aquat Sci 47:1166–1176

    Article  Google Scholar 

  • Leavitt PR, Findlay DL (1994) Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can J Fish Aquat Sci 51:2286–2299

    Article  Google Scholar 

  • Legendre P, Birks HJB (2001) Statistical learning in Palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques, vol 5. Kluwer, Dordrecht

    Google Scholar 

  • Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dyn 24:131–144

    Article  Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289:1743–1746

    Article  Google Scholar 

  • McCabe GJ, Dettinger MD (2002) Primary modes and predictability of year-to-year snowpack variations in the Western United States from teleconnections with Pacific Ocean climate. J Hydrometerol 3:13–25

    Article  Google Scholar 

  • McGowan S (2013) Pigment Studies. In: Elias S et al (eds) Encyclopedia of quaternary sciences, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Michel TJ, Saros JE, Interlandi SJ, Wolfe AP (2006) Resource requirements of four freshwater diatom taxa determined by in situ growth bioassays using natural populations from alpine lakes. Hydrobiologia 568:235–243

    Article  Google Scholar 

  • Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77

    Article  Google Scholar 

  • Morris DP, Lewis WM (1988) Phytoplankton nutrient limitation in Colorado mountain lakes. Freshw Biol 20:315–327

    Article  Google Scholar 

  • Naftz DL, Schuster PF, Johnson CA (2011) A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA. Geochem Trans 12:2–10

    Article  Google Scholar 

  • National Atmospheric Deposition Program (NADP) (2011) Nitrate wet ion deposition. http://nadp.sws.uiuc.edu. (Accessed 5 Jan 2013)

  • Pederson, GT, Fagre DB, Gray ST, Graumlich LJ (2004) Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA. Geophys Res Lett 31. doi:10.1029/2004GL0197770

  • Robinson C, Kawecka B (2005) Benthic diatoms of an Alpine stream/lake network in Switzerland. Aquat Sci 67:492–506

    Article  Google Scholar 

  • Rühland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arct Antarct Alp Res 35:110–123

    Article  Google Scholar 

  • Saros JE, Anderson NJ (2014) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev. doi:10.1111/brv.12120

    Google Scholar 

  • Saros JE, Interlandi SJ, Doyle S, Michel TJ, Williamson CE (2005a) Are the deep chlorophyll maxima in alpine lakes primarily induced by nutrient availability, not UV avoidance? Arct Antarct Alp Res 37:557–563

    Article  Google Scholar 

  • Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005b) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes. Can J Fish Aquat Sci 62:1681–1689

    Article  Google Scholar 

  • Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB, Arnett HA, Stone JR, Williamson CE, Wolfe AP (2010) Melting alpine glaciers enrich high elevation lakes with reactive nitrogen. Environ Sci Technol 44:4891–4896

    Article  Google Scholar 

  • Saros JE, Clow DW, Blett T, Wolfe AP (2011) Critical nitrogen deposition loads in high-elevation lakes of the Western US inferred from paleolimnological records. Water Air Soil Pollut 216:193–202

    Article  Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Slemmons KEH, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo- and plaeoeco-logical approaches. Ecology 93:2154–2155

    Article  Google Scholar 

  • Schindler DW, Donahue WF (2006) An impending water crisis in Canada’s western prairie provinces. Proc Nat Acad Sci Biol 103:7210–7216

    Article  Google Scholar 

  • Schuster P, White D, Naftz D, Cecil L (2000) Chronological refinement of an ice core record at Upper Fremont Glacier, south central North America. J Geophys Res 105:4657–4666

    Article  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  Google Scholar 

  • Slemmons KEH, Saros JE (2012) Implications of nitrogen-rich glacial meltwater for phytoplankton diversity and productivity in alpine lakes. Limnol Oceanogr 57:1651–1663

    Article  Google Scholar 

  • Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. http://westerndiatoms.colorado.edu. (Accessed 09 May 2012)

  • Stevens LR, Stone JR, Campbell J, Fritz SC (2006) A 2200-yr record of hydrological variability from Foy Lake, Montana, USA inferred from diatom and geochemical data. Quat Res 65:264–274

    Article  Google Scholar 

  • Stone JR, Fritz SC (2004) Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic:benthic ratios. Limnol Oceanogr 49:1540–1548

    Article  Google Scholar 

  • Stone JR, Fritz SC (2006) Multidecadal drought and Holocene climate instability in the Rocky Mountains. Geology 34:409–412

    Article  Google Scholar 

  • Thies H, Nickus U, Mair V, Tessadri R, Tait D, Thaler B, Psenner R (2007) Unexpected response of high alpine lake waters to climate warming. Environ Sci Technol 41:7424–7429

    Article  Google Scholar 

  • Tibby J (2004) Development of a diatom-based model for inferring total phosphorus in southeastern Australian water storages. J Paleolimnol 31:23–36

    Article  Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372

    Article  Google Scholar 

  • Vinebrooke RD, Thompson PL, Hobbs WO, Luckman BH, Graham MD, Wolfe AP (2010) Glacially mediated impacts of climate warming on alpine lakes of the Canadian Rocky Mountains. Verhandlungen des Internationalen Verein Limnologie 30:1449–1452

    Google Scholar 

  • Whitlock C, Bartlein PJ (1993) Spatial variations of Holocene climatic change in the Yellowstone region. Quat Res 39:231–238

    Article  Google Scholar 

  • Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34. doi:10.1029/2007GL030216

  • Williams MW, Knauf M, Caine N, Liu F, Verplanck PL (2006) Geochemistry and Source Waters of Rock Glacier Outflow, Colorado Front Range. Permafr Periglac 17:13–33

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435

    Article  Google Scholar 

  • Wynn PM, Hodson AJ, Heaton THE, Chenery SR (2007) Nitrate production beneath a high arctic glacier, Svalbard. Chem Geol 244:88–102

    Article  Google Scholar 

  • Yang Q, Mayewski PA, Linder E, Whitlow S, Twickler M (1996) Chemical species spatial distribution and relationship to elevations and snow accumulation rate over the Greenland Ice Sheet. J Geophys Res 101:18629–18637

    Article  Google Scholar 

  • Zhang G, Xie H, Kang S, Yi D, Ackley SF (2011) Monitoring lake level changes on the Tibetan Plateau using ICE Sataltimetry data (2003–2009). Remote Sens Environ 115:1733–1742

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dennis Anderson, Andrea Nurse, and Clive Devoy for assistance with chemical analyses and pollen preparation at the University of Maine, and Teresa Needham and Graham Morris for assistance with pigment analyses at the University of Nottingham. Erin Overholt assisted with analysis of light data from Jasper and Albino. We are grateful for field and laboratory assistance provided by Carl Tugend, Carmen Daggett, Caleb Slemmons, Courtney Wigdahl, and Dom Winski. We thank Will Hobbs and Joy Ramstack Hobbs for assistance with the diatom statistical analysis. This project was funded by the US National Science Foundation (Division of Environmental Biology-0734277), as well as the Dan and Betty Churchill Fund and a University of Maine Correll Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista E. H. Slemmons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slemmons, K.E.H., Saros, J.E., Stone, J.R. et al. Effects of glacier meltwater on the algal sedimentary record of an alpine lake in the central US Rocky Mountains throughout the late Holocene. J Paleolimnol 53, 385–399 (2015). https://doi.org/10.1007/s10933-015-9829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-015-9829-3

Keywords

Navigation