Skip to main content

Advertisement

Log in

Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ager TA (1998) Postglacial vegetation history of the Kachemak Bay Area, Cook Inlet, south-central Alaska. In: Kelley KD, Gough LP (eds) Geologic studies in Alaska by the US Geological Survey, 1998. US Geological Survey Professional Paper 1615, pp 147–165

  • Anderson L, Abbot MB, Finney BP, Burns S (2005) Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat Res 64:21–35. doi:10.1016/j.yqres.2005.03.005

    Article  Google Scholar 

  • Beikman HM (1980) Geologic map of Alaska; U.S. Geological Survey Professional Paper PP 0171, 1 plate

  • Brandriss ME, O’Neil JR, Edlund MB, Stoermer EF (1998) Oxygen isotope fractionation between diatomaceous silica and water. Geochim Cosmochim Acta 62:1119–1125. doi:10.1016/S0016-7037(98)00054-4

    Article  Google Scholar 

  • Brewer TS, Leng MJ, Mackay AW, Lamb AL, Tyler JJ, Marsh NG (2008) Unraveling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. J Quat Sci 23:321–330. doi:10.1002/jqs.1171

    Article  Google Scholar 

  • Cayan DR, Peterson DH (1989) The influence of the North Pacific atmospheric circulation on streamflow in the west. Geophys Monogr 55:375–379

    Google Scholar 

  • Daigle T, Kaufman DS (2008) Holocene climate inferred from glacier extent, lake sedimentation, and tree rings at Goat Lake, Kenai Mountains, Alaska. J Quat Sci (in press). doi: 10.1002/jqs.1166

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dodd JP, Sharp ZD, Fawcett PJ, Schiff C, Kaufman DS (2007) A laser-extraction technique for oxygen isotope analysis of diatom frustules. Eos Trans AGU 88(52):B13A–0893

    Google Scholar 

  • Fisher DA, Wake C, Kreutz K, Yalcin K, Steig R, Mayewski P, Anderson L, Zheng J, Rupper S, Zdanowicz C, Demuth M, Waszkiewicz M, Dahl-Jensen D, Goto-Azuma K, Bourgeois JB, Koerner RM, Sekerka J, Osterberg E, Abbott MB, Finney BP (2004) Stable isotope records from Mount Logan, Eclipse ice cores, nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometers: sudden shifts and tropical connections. Géographie Physique et Quaternaire 58:9033–9048

    Google Scholar 

  • Gat JR (1981) Isotopic fractionation. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology, IAEA Technical Report Series 210. International Atomic Energy Agency, Vienna, Austria, pp 21–33

    Google Scholar 

  • Gregory-Eaves I, Smol JP, Finney BP, Edwards ME (1999) Diatom-based transfer functions for inferring past climatic and environmental changes in Alaska, U.S.A. Arct Antarct Alp Res 31:353–365. doi:10.2307/1552584

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618. doi:10.1191/0959683605hl836rr

    Article  Google Scholar 

  • Hein MK (1990) Flora of Adak Island, Alaska: Bacillariophyceae (Diatoms). Bibliotheca Diatomologica Band 21. J. Cramer Verlag, Berlin, 133 pp

  • Heusser CJ (1983) Holocene vegetation history of the Prince William Sound region, south-central Alaska. Quat Res 19:337–355. doi:10.1016/0033-5894(83)90040-6

    Article  Google Scholar 

  • Hodge SM, Trabant DC, Krimmel RM, Heinrichs TA, March RS, Josberger EG (1998) Climate variations and changes in mass of three glaciers in western North America. J Clim 11:2161–2179. doi:10.1175/1520-0442(1998)011<2161:CVACIM>2.0.CO;2

    Article  Google Scholar 

  • Holdsworth G, Krouse HR, Nosal M (1992) Ice core climate signals from Mount Logan, Yukon A.D. 1700–1897. In: Bradley RS, Jones PD (eds) Climate since A.D. 500. Routelidge, London, pp 483–516

    Google Scholar 

  • Hu FS, Ito E, Brown TA, Curry BB, Engstrom DR (2001) Pronounced climatic variations in Alaska during the last two millennia. Proc Natl Acad Sci USA 98:10552–10556. doi:10.1073/pnas.181333798

    Article  Google Scholar 

  • Juillet A (1980) Structure de la silice biogénique: nouvelles données apportees par l’analyse isotopique de l’oxygène. CR Acad Sci 290:1237–1239

    Google Scholar 

  • Juillet-Leclerc A, Labeyrie L (1987) Temperature dependence of the oxygen isotope fractionation between diatom silica and water. Earth Planet Sci Lett 84:69–74. doi:10.1016/0012-821X(87)90177-4

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Lawrence JR, Gedzelman SD, White JWC, Smiley D, Lazov P (1982) Storm trajectories in eastern US D/H isotopic composition of precipitation. Nature 296:638–640. doi:10.1038/296638a0

    Article  Google Scholar 

  • Leng ML, Barker PA (2006) A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth Sci Rev 75:5–27. doi:10.1016/j.earscirev.2005.10.001

    Article  Google Scholar 

  • Leng ML, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831. doi:10.1016/j.quascirev.2003.06.012

    Article  Google Scholar 

  • McKay N (2007) Late Holocene climate at Hallet and Greyling Lakes, central Chugach Range, south-central Alaska. M.S. Thesis, Flagstaff, Arizona, Northern Arizona University, 96 pp

  • Moore GWK, Holdsworth G, Alverson K (2002) Climate change in the North Pacific region over the past three centuries. Nature 420:401–403. doi:10.1038/nature01229

    Article  Google Scholar 

  • Moore GWK, Alverson K, Holdsworth G (2003) The impact that elevation has on the ENSO signal in precipitation records from the Gulf of Alaska region. Clim Change 59:101–121. doi:10.1023/A:1024423925161

    Article  Google Scholar 

  • Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401. doi:10.1023/B:JOPL.0000021854.70714.6b

    Article  Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic silica opal in pelagic marine sediments. Deep-Sea Res 36:1415–1426. doi:10.1016/0198-0149(89)90092-7

    Article  Google Scholar 

  • Moschen R, Lücke A, Parples J, Radtke U, Schlesser GH (2006) Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochim Cosmochim Acta 70:4367–4379. doi:10.1016/j.gca.2006.07.001

    Article  Google Scholar 

  • Newman JE, Branton CI (1972) Annual water balance and agricultural development in Alaska. Ecology 53:519. doi:10.2307/1934243

    Article  Google Scholar 

  • Overland JE, Adams JM, Bond NA (1999) Decadal variability of the Aleutian Low and its relation to high-latitude circulation. J Clim 12:1542–1548. doi:10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2

    Article  Google Scholar 

  • Papineau JM (2001) Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int J Climatol 21:1577–1592. doi:10.1002/joc.686

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH et al (2004) INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Rings A, Lücke A, Schleser GH (2004) A new method for the quantitative separation of diatom frustules from lake sediments. Limnol Oceanogr Methods 2:25–34

    Google Scholar 

  • Rodionov SN, Overland JE, Bond NA (2005) Spatial and temporal variability of the Aleutian Climate. Fish Oceanogr 14:3–21. doi:10.1111/j.1365-2419.2005.00363.x

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge, 747 pp

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophysical Monograph 78. American Geophysical Union, Washington, DC, pp 1–36

    Google Scholar 

  • Rupper S, Steig EJ, Roe G (2004) The relationship between snow accumulation at Mt. Logan, Yukon, Canada, and climate variability in the North Pacific. J Clim 17:4724–4739. doi:10.1175/JCLI-3202.1

    Article  Google Scholar 

  • Salathé EP (2006) Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys Res Lett 33. doi:10.1029/2006GL026882

  • Sauer PE, Miller GH, Overpeck JT (2001) Oxygen isotope ratios of organic matter in arctic lakes as a paleoclimate proxy: field and laboratory investigations. J Paleolimnol 25:43–64. doi:10.1023/A:1008133523139

    Article  Google Scholar 

  • Schiff CJ (2007) A modern survey and Holocene record of lake water and diatom isotopes from south Alaska. M.S. Thesis, Flagstaff, Arizona, Northern Arizona University, 103 pp

  • Schiff CJ, Kaufman DS, Wallace KL, Werner A, Ku R, Brown TA (2008) Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska. Quat Geochronol 3:56–67. doi:10.1016/j.quageo.2007.05.001

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A et al (2005) Climate-driven regime shifts in the ecology of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402. doi:10.1073/pnas.0500245102

    Article  Google Scholar 

  • Spooner IS, Barnes S, Baltzer KB, Raeside R, Osborn GD, Mazzuchi D (2003) The impact of air mass circulation dynamics on Late Holocene paleoclimate in northwestern North America. Quat Int 108:77–83. doi:10.1016/S1040-6182(02)00196-9

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB 3.0 14C calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Swann GE, Leng MJ, Sloane HJ, Maslin MA (2008) Isotope offsets in marine diatom δ18O over the last 200 ka. J Quat Sci 23:389–400. doi:10.1002/jqs.1185

    Article  Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004) The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14:296–298. doi:10.1191/0959683604hl707fa

    Article  Google Scholar 

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317. doi:10.1016/S0065-2504(08)60183-X

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY, 352 pp

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319. doi:10.1007/BF00204745

    Article  Google Scholar 

  • Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid JK (1992) The global historical climatology network; Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041. Available on-line [http://cdiac.esd.ornl.gov/epubs/ndp/ndp041/ndp041.html] from Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

  • Wake CP, Yalcin K, Gundestrup NS (2002) The climate signal recorded in the oxygen-isotope, accumulation and major-ion time series from the Eclipse ice core, Yukon Territory, Canada. Ann Glaciol 35:416–422. doi:10.3189/172756402781817266

    Article  Google Scholar 

  • Wiles GC, Barclay DJ, Calkin PE, Lowell TV (2008) Century to millennial-scale temperature variations for the last two thousand years indicated from glacial geologic records of Southern Alaska. Global Planet Change 60:115–125. doi:10.1016/j.gloplacha.2006.07.036

    Article  Google Scholar 

  • Wilson R, Wiles G, D’Arrigo R, Zweck C (2007) Cycles and shifts: 1,300 years of multi-decadal temperature variability in the Gulf of Alaska. Clim Dyn 28:425–440. doi:10.1007/s00382-006-0194-9

    Article  Google Scholar 

  • Wolfe AP (2002) Climate modulates the acidity of arctic lakes on millennial timescales. Geology 30:215–218. doi:10.1130/0091-7613(2002)030<0215:CMTAOA>2.0.CO;2

    Article  Google Scholar 

  • Wooller MJ, Francis D, Fogel ML, Miller GH, Walker IR, Wolfe AP (2004) Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments. J Paleolimnol 31:267–274. doi:10.1023/B:JOPL.0000021944.45561.32

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Henderson for his knowledge and assistance with isolating diatoms. N. McKay, T. Daigle, C. Kassel, E. Helfrich, and P. Foletta assisted us in core recovery from Mica Lake and H. Roop and K. Kathan, provided assistance during water sampling. We thank K. Wallace for help with tephra identification and logistical support in Anchorage. D. Fisher provided valuable insight and permission to publish the Mt. Logan data. This project is a contribution to the ARCSS 2 kyr project and was funded by the National Science Foundation (ARC 0455043 and ATM-0318341), the Geological Society of America, the USGS/Alaska Volcano Observatory, and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell S. Kaufman.

Additional information

This is one of fourteen papers published in a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiff, C.J., Kaufman, D.S., Wolfe, A.P. et al. Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. J Paleolimnol 41, 189–208 (2009). https://doi.org/10.1007/s10933-008-9261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9261-z

Keywords

Navigation