Skip to main content
Log in

Towards the Development of Hemerythrin-Based Blood Substitutes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Hemerythrin is proposed as an alternative to hemoglobin-based blood substitutes. In contrast to hemoglobin, hemerythrin exhibits negligible reactivity towards oxidative and nitrosative stress agents (peroxide, nitric oxide, nitrite). Protocols for attachment of polyethylene glycol and glutaraldehyde cross-linking of Hr are described. These derivatizations appear to have favorable effects on O2 affinity and autoxidation rates for use in blood substitutes. Based on lessons learned from hemoglobin-based blood substitutes, these derivatizations should also help limit extravasation and antigenicity of a hemerythrin-based blood substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Hr:

Hemerythrin

Hb:

Hemoglobin

LB/amp:

Luria–Bertani/ampicillin

OD600:

Optical density at 600 nm

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PBS:

Phosphate buffer saline

PEG:

Polyethelene glycol

MS:

Methyl-PEG4-N-hydroxysuccinimide ester

TMS:

(Methyl-PEG12)3-PEG4-N-hydroxysuccinimide ester

DMSO:

Dimethylsulfoxide

GL:

Gluteraldehyde

References

  1. Alayash AI, Cashon RE (1994) Ann NY Acad Sci 738:378–381

    Article  CAS  Google Scholar 

  2. Alayash AI (2004) Nat Rev Drug Discov 3(2):152–159

    Article  CAS  Google Scholar 

  3. Blomberg LM, Blomberg MRA, Siegbahn PEM (2004) J Biol Inorg Chem 9:923–935

    Article  CAS  Google Scholar 

  4. Chang TM (2004) Artif Organs 28(9):789–794

    Article  CAS  Google Scholar 

  5. Chang TMS (2009) Crit Care Clinics 25:373–382

    Article  CAS  Google Scholar 

  6. Cooper CE, Silaghi-Dumitrescu R, Rukengwa M, Alayash AI, Buehler PW (2008) Biochim Biophys Acta 1784(10):1415–1420

    CAS  Google Scholar 

  7. Eike JH, Palmer AF (2004) Biotechnol Prog 20(5):1543–1549

    Article  CAS  Google Scholar 

  8. Farmer CS, Kurtz DM Jr, Phillips RS, Ai J, Sanders-Loehr J (2000) J Biol Chem 275(22):17043–17050

    Article  CAS  Google Scholar 

  9. Farmer CS, Kurtz DM Jr, Liu ZJ, Wang BC, Rose J, Ai J, Sanders-Loehr J (2001) J Biol Inorg Chem 6(4):418–429

    Article  CAS  Google Scholar 

  10. Giulivi C, Davies KJA (1990) J Biol Chem 265(32):19453–19460

    CAS  Google Scholar 

  11. Gladwin MT (2005) Am J Respir Cell Mol Biol 32(5):363–366

    Article  CAS  Google Scholar 

  12. Gu J, Chang TM (2009) Artif Cells Blood Substit Immobil Biotechnol 37(2):69–77

    Article  CAS  Google Scholar 

  13. Herold S (1998) FEBS Lett 439(1–2):85–88

    Article  CAS  Google Scholar 

  14. Herold S, Exner M, Nauser T (2001) Biochemistry 40(11):3385–3395

    Article  CAS  Google Scholar 

  15. Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC (2002) J Am Chem Soc 124:9845–9855

    Article  CAS  Google Scholar 

  16. Kryatov SV, Rybak-Akimova EV, Schindler S (2005) Chem Rev 105:2175–2226

    Article  CAS  Google Scholar 

  17. Liu ZC, Chang TM (2008) Artif Cells Blood Substit Immobil Biotechnol 36(5):421–430

    Article  Google Scholar 

  18. Nocek JM, Kurtz DM Jr, Pickering RA, Doyle MP (1984) J Biol Chem 259(20):12334–12338

    CAS  Google Scholar 

  19. Olson JS, Foley EW, Rogge C, Tsai AL, Doyle MP, Lemon DD (2004) Free Radic Biol Med 36(6):685–697

    Article  CAS  Google Scholar 

  20. Reeder BJ, Sharpe MA, Kay AD, Kerr M, Moore K, Wilson MT (2002) Biochem Soc Trans 30(4):745–748

    Article  CAS  Google Scholar 

  21. Reeder BJ, Svistunenko DA, Sharpe MA, Wilson MT (2002) Biochemistry 41:367–375

    Article  CAS  Google Scholar 

  22. Reeder BJ, Svistunenko DA, Cooper CE, Wilson MT (2004) Antioxid Redox Signal 6(6):954–966

    CAS  Google Scholar 

  23. Reeder BJ, Grey M, Silaghi-Dumitrescu RL, Svistunenko DA, Bulow L, Cooper CE, Wilson MT (2008) J Biol Chem 283(45):30780–30787

    Article  CAS  Google Scholar 

  24. Silaghi-Dumitrescu R, Silaghi-Dumitrescu I (2006) J Inorg Biochem 100(1):161–166

    Article  CAS  Google Scholar 

  25. Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K (2009) Bioconjug Chem 20(8):1419–1440

    Article  CAS  Google Scholar 

  26. Vollaard NB, Reeder BJ, Shearman JP, Menu P, Wilson MT, Cooper CE (2005) Free Radic Biol Med 39(9):1216–1228

    Article  CAS  Google Scholar 

  27. Vollaard NB, Shearman JP, Cooper CE (2005) Sports Med 35(12):1045–1062

    Article  Google Scholar 

  28. Winslow RM (2004) Artif Organs 28(9):800–806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. C.C. Cooper (University of Essex, UK) for helpful discussions. Funding from the Romanian government (project PNII 565/2007) and NIH grant GM040388 (D.M.K.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Silaghi-Dumitrescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mot, A.C., Roman, A., Lupan, I. et al. Towards the Development of Hemerythrin-Based Blood Substitutes. Protein J 29, 387–393 (2010). https://doi.org/10.1007/s10930-010-9264-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9264-2

Keywords

Navigation