Skip to main content
Log in

Gas Permeability Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Environmental issues, such as the depletion of fossil resources and waste disposal, have instigated the development of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a biobased and biodegradable polymer, bacterially produced from palm oil. PHBHHx is a versatile polymer and this study aims to further characterize it for the possible application as food packaging material. In this respect, barrier properties for gases such as O2, water vapor and CO2 are of great importance. PHBHHx films were made using compression molding. Results show that the O2 permeability (PO2) of PHBHHx is 6–25 times lower as compared to common low barrier materials such as polypropylene (PP), polyethylene (PE) and polystyrene (PS), close to the PO2 of poly(ethylene terephthalate) (PET) and poly(lactic acid) (PLA), but more than 900 times higher as compared to ethylene vinyl alcohol (EVOH), which is a high barrier polymer used in multilayer packaging. The water vapor permeability of PHBHHx is similar to materials such as PLA, EVOH, polyamide and PET, but slightly higher than more apolar polymers like PP and PE. The CO2 permeability (PCO2) of PHBHHx is lower as compared to PP, PE and PS (2–20 times), but higher as compared to PET (>7 times) and EVOH and poly(vinyl alcohol) (>650 times). In addition, the effect of ambient relative humidity (RH) and temperature on PO2 of PHBHHx was investigated. The results show that PO2 at 23 °C, 0 % RH is increased with 8, 18 and 33 % at RH of 50, 70 and 90 % respectively. At 10 °C, PO2 decreased with 62 %, whereas at 38 °C PO2 increased with 200 % in comparison to PO2 at 23 °C (0 % RH). Overall, it can be concluded that PHBHHx shows potential for certain applications in food packaging, however efforts should be made to further improve the permeability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amass W, Amass A, Tighe B (1998) Polym Int 47:89–144

    Article  CAS  Google Scholar 

  2. Poirier Y, Nawrath C, Somerville C (1995) Nat Biotechnol 13:142–150

    Article  CAS  Google Scholar 

  3. Jacquel N, Tajima K, Nakamura N, Miyagawa T, Pan P, Inoue Y (2009) J Appl Polym Sci 114:1287–1294

    Article  CAS  Google Scholar 

  4. Kai W, He Y, Inoue Y (2005) Polym Int 54:780–789

    Article  CAS  Google Scholar 

  5. Qian J, Zhu L, Zhang J, Whitehouse RS (2007) J Polym Sci Part B Polym Phys 45:1564–1577

    Article  CAS  Google Scholar 

  6. Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ (2002) J Appl Polym Sci 86:2145–2152

    Article  CAS  Google Scholar 

  7. Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  8. Lu X, Zhang J, Wu Q, Chen G-Q (2003) FEMS Microbiol Lett 221:97–101

    Article  CAS  Google Scholar 

  9. I. Noda, S. B. Lindsey, D. Caraway, In: Plastics from Bacteria, eds.: Chen GG-Q (Springer Berlin Heidelberg, 2010)

  10. Arvanitoyannis IS (1999) J Macromol Sci C 39:205–271

    Article  Google Scholar 

  11. Siracusa V, Blanco I, Romani S, Tylewicz U, Rocculi P, Rosa MD (2012) J Appl Polym Sci 125:390–401

    Article  Google Scholar 

  12. Lagaron JM, Catalá R, Gavara R (2004) Mater Sci Tech 20:1–7

    Article  CAS  Google Scholar 

  13. Alata H, Aoyama T, Inoue Y (2007) Macromolecules 40:4546–4551

    Article  CAS  Google Scholar 

  14. Pan P, Shan G, Bao Y, Weng Z (2013) J Appl Polym Sci 129:1374–1382

    Article  CAS  Google Scholar 

  15. Xie Y, Noda I, Akpalu YA (2008) J Appl Polym Sci 109:2259–2268

    Article  CAS  Google Scholar 

  16. Cagnon T, Guillaume C, Guillard V, Gontard N (2013) Packag Technol Sci 26:137–148

    Article  CAS  Google Scholar 

  17. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Packag Technol Sci 27:149–159

    Article  Google Scholar 

  18. Bronlund JE, Redding GP, Robertson TR (2013) Packag Technol Sci 27:193–201

    Article  Google Scholar 

  19. Esturk O, Ayhan Z, Gokkurt T (2013) Packag Technol Sci 27:179–191

    Article  Google Scholar 

  20. Ding C, Cheng B, Wu Q (2011) J Therm Anal Calorim 103:1001–1006

    Article  CAS  Google Scholar 

  21. S. Matteucci, Y. Yampolskii, B. D. Freeman, I. Pinnau, In: Materials Science of Membranes for Gas and Vapor Separation, eds.: (John Wiley & Sons, Ltd, Chichester, 2006), pp. 1-47

  22. Bao L, Dorgan JR, Knauss D, Hait S, Oliveira NS, Maruccho IM (2006) J Membr Sci 285:166–172

    Article  CAS  Google Scholar 

  23. Drieskens M, Peeters R, Mullens J, Franco D, Lemstra PJ, Hristova-Bogaerds DG (2009) J Polym Sci Part B Polym Phys 47:2247–2258

    Article  CAS  Google Scholar 

  24. Lange J, Wyser Y (2003) Packag Technol Sci 16:149–158

    Article  CAS  Google Scholar 

  25. Massey LK (2002) Permeability properties of plastics and elastomers. William Andrew Inc., New York

    Google Scholar 

  26. Aulin C, Gällstedt M, Lindström T (2010) Cellulose 17:559–574

    Article  CAS  Google Scholar 

  27. Hong S-I, Krochta JM (2006) J Food Eng 77:739–745

    Article  CAS  Google Scholar 

  28. Muramatsu M, Okura M, Kuboyama K, Ougizawa T, Yamamoto T, Nishihara Y, Saito Y, Ito K, Hirata K, Kobayashi Y (2003) Radiat Phys Chem 68:561–564

    Article  CAS  Google Scholar 

  29. Mujica-Paz H, Gontard N (1997) J Agric Food Chem 45:4101–4105

    Article  Google Scholar 

  30. Siracusa V (2012) Int J Polym Sci 2012:11

    Article  Google Scholar 

  31. S. N. Dhoot, B. D. Freeman, M. E. Stewart, In: Encyclopedia of Polymer Science and Technology, eds.: (John Wiley & Sons, Inc., 2002), pp. 198–263

  32. Gontard N, Thibault R, Cuq B, Guilbert S (1996) J Agric Food Chem 44:1064–1069

    Article  CAS  Google Scholar 

  33. Wang Y, Easteal AJ, Chen XD (1998) Packag Technol Sci 11:169–178

    Article  CAS  Google Scholar 

  34. Mrkić S, Galić K, Ivanković M (2007) J Plast Film Sheet 23:239–256

    Article  Google Scholar 

  35. Mrkic S, Galic K, Ivankovic M, Hamin S, Cikovic N (2006) J Appl Polym Sci 99:1590–1599

    Article  CAS  Google Scholar 

  36. Gajdoš J, Galić K, Kurtanjek Ž, Ciković N (2000) Polym Test 20:49–57

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank G. Reekmans for performing the 1H-NMR analysis. The authors are also especially grateful to J. Put, G. Reggers and D. Adons for their help with respectively gel permeation chromatography, differential scanning calorimetry and gas permeability measurements. A special thank you goes to E. Caers for proofreading the manuscript and to Kenichiro Nishiza of Kaneka for providing the PHBHHx used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Yperman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandewijngaarden, J., Murariu, M., Dubois, P. et al. Gas Permeability Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Polym Environ 22, 501–507 (2014). https://doi.org/10.1007/s10924-014-0688-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0688-1

Keywords

Navigation